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Abstract
Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. 
Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these 
errors need to be accurately quantified, and ensemble forecast is a way to achieve this goal. This paper reviews the different 
approaches that have been proposed in this direction. A particular attention is given to the models under location uncertainty 
and stochastic advection by Lie transport. Besides, this paper introduces a new energy-budget-based stochastic subgrid 
scheme and a new way of parameterizing models under location uncertainty. Finally, new ensemble forecast simulations are 
presented. The skills of that new stochastic parameterization are compared to that of the dynamics under location uncertainty 
and of randomized-initial-condition methods.

1  Introduction

Understanding, modeling and tracking high Reynolds flows 
remain main challenges in current researches. Indeed, 
beyond economical applications related to weather forecast-
ing and industrial flows analysis, accurate climate projec-
tions have become a societal need. The complexity of such 
systems is mainly due to the non-linear and non-local nature 
of the evolution laws. These features make large-scale flow 
structures interact with smaller ones. As such, the large-scale 
flow components cannot be simulated without the small-
scale components. However, the computational expense of 
solving all the hydrodynamical scales is still today beyond of 
reach even for turbulent flows of moderated complexity. As 
an example, today’s most accurate oceanic currents numeri-
cal simulations use a horizontal mesh resolution of about 1 
km [66, 80], whereas solving the “real” equations of fluid 
dynamics, say the Navier–Stokes equations, would require 
a grid cell of about 1 cm.

The effects of the unresolved so-called turbulent small-
scale fluctuations have to be modeled. Turbulent dissipa-
tions, advection corrections and backscatterings need to be 
introduced to mimic the action of the small-scale processes 
on the large-scale components. They respectively reduce, 
move and increase energy of large-scale tracers. But, even 
using the best subgrid model, the true dynamics cannot be 
fully recovered by a large-scale model. Strong errors remain 
as only the unresolved dissipation is in general taken into 
account. The unresolved subgrid components of tracer or 
velocity remains by definition unknown. In other words, 
they are uncertain. In this review, uncertainty and stochas-
ticity does not mean noise but rather something that is only 
known through a probability distribution. Uncertainty can be 
attached to coherent structures in time and space. To better 
express this idea, let us introduce a comparison. When look-
ing at a tree, you cannot see all the branches because they are 
either too small or hidden by leaves. The particular shapes of 
these branches are uncertain and could be modeled by ran-
dom processes. However, you know that they respect some 
features. For instance, each of them is linked to the trunk 
through one and only one path. These branches are uncertain 
coherent structures in the same way as unresolved small-
scale vortices are. Both must respect appropriate physical 
laws. Since resolved and subgrid fluid dynamics are cou-
pled, the large-scale resolved dynamics must explicitly take 
into account this stochastic nature. Understanding, modeling 
and simulating this randomness or errors is the subject of 
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Uncertainty Quantification (UQ). For sake of concision, this 
review will not deal with the random models specifically 
introduced to study extreme events since there is a full lit-
erature on this subject (e.g. [50]).

The paper is organized as follows. We first motivate the 
need for UQ in CFD through the data assimilation applica-
tion. Then, Sect. 3 describes some widely-used CFD UQ 
tools which are not a priori related to the numerical scale 
truncation. Section 4 reviews the historical stochastic sub-
grid parameterizations, which were not originally intro-
duced for UQ purposes. Next, Sect. 5 enumerates the more 
recent schemes designed for UQ purposes in particular the 
physically-based ones. In this section, we also propose a 
new stochastic subgrid parameterization adapted to the CFD 
dissipation scheme through an imposed energy budget. Sec-
tion 6 focuses on a specific physically-based family of sto-
chastic subgrid tensors: the models under Location Uncer-
tainty (LU) and the Stochastic Advection by Lie Transport 
(SALT). After this, Sect. 7 details the metrics used to assess 
the ensemble forecasts’ qualities. Finally, new numerical 
results are presented for short-term and long-term ensemble 
forecasts. Several stochastic subgrid parameterizations are 
compared on a simplified model of geophysical fluid flow 
dynamics.

2 � Data Assimilation, a Main Motivation

To introduce this review topic, let us first give a brief 
description about data assimilation and filtering method. 
Even beyond fluid dynamics applications, coupling numeri-
cal model simulations and measurements is of great inter-
est. This is called data assimilation. Some of these meth-
ods, derived from variational principle and optimal control 
theory, are deterministic [91]. A functional criterion is opti-
mized in terms of control variables (such as initial condi-
tions) to drive the model as closely as possible to the obser-
vations. For instance, in 4D-Var algorithms solutions are 
functions of time and space but also of the initial conditions. 
Variational optimization performed using the adjoint tangent 
dynamical model allows to infer an initial condition with a 
trajectory that matches at best the observations (with respect 
to a given distance). This review will instead be placed in 
the framework of probabilistic data assimilation methods, 
such as smoothing and above all filtering [19, 38, 39, 121]. 
These methods allow combining a random dynamical model 
together with noisy and partial observations of the system 
of interest to drive an ensemble forecast—a set of realiza-
tions—along time. Hybrid approaches also exist, such as 
4DEnVar [10, 14, 99, 145, 171–173].

In probabilistic data assimilation algorithms, the ran-
domness of the model is meant to capture the errors of the 
dynamical system whereas randomness of observations 

represents the measurement errors. If the model noise is 
prominent, the estimated filtered variable relies principally 
on the observations. Conversely, when the observation noise 
is dominant, the filtered variable trajectory is mainly driven 
by the model. For this reason, an accurate design of the 
model errors is crucial in weather and climate communi-
ties [1, 8, 126, 127]. Furthermore, due to the huge state-
space dimension ( ∝ 107−9 ), the ensemble size is usually 
very small in comparison ( ∝ 101−2 ). Thus, the randomness 
of the dynamical model has to be very efficient. Ensemble 
members, also called particles, have to quickly spread in the 
phase space. At the same time, each particle should remain 
a “physically plausible realization” to focus on meaningful 
regions of the state space.

We will now describe several ways to represent the ran-
domness of the fluid dynamical model. That randomness can 
have several sources: e.g. wrong physics, unknown param-
eters or initial conditions. We first detail the approaches 
which are not a priori related to the unresolved components 
of the dynamics. Then, we will review random parameteri-
zations which model energy backscatterings and/or errors 
induced by the subgrid dynamics.

3 � UQ Not Directly Related 
to the Coarse‑Resolution‑Induced Errors

3.1 � UQ from Parameters, Boundary Conditions 
and Forcings

Some authors inject randomness through the parameters. 
Indeed, parameters like viscosity, initial and boundaries con-
ditions are often assumed random (e.g. [92, 147]). The cha-
otic nature of fluid dynamics increases quickly the eventual 
errors associated to these parameters. Other authors study 
the uncertainty arising from forcings. In particular, CO2 con-
centration conditions are difficult to specify in climate sci-
ences. Lucarini et al. [102] approach this problematic with 
Ruelle response theory.

3.2 � Random Initial Conditions

In fluid dynamics, random initial conditions have been 
widely used for both UQ and predictability studies (e.g. 
[111]). For a long time, operational weather forecast cent-
ers had relied on random perturbations of initial conditions 
to spread the ensemble forecasts [16, 42]. Different types of 
perturbations were proposed to that end. For instance, the 
European center (ECMWF) relied on the so-called singular 
vectors method (SV) while the American center (NCEP) 
used the bred vectors (BV). The common idea is to perturb 
the initial condition along the few directions that will lead 
to a maximum ensemble variance in the next future. The SV 
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are obtained by maximizing the ensemble variance after a 
finite-time linearized simulation. The linearization enables 
to solve the optimization problem with the adjoint equations 
and a singular value decomposition. The amplitude of the 
perturbation is then tuned by inflation (see later in this sec-
tion for a description of the inflation method). In contrast, 
the bred vectors computation does not need an adjoint code 
nor a linearization. Two simulations —perturbed and not 
perturbed—are launched from a previous time. At the cur-
rent time of interest—the time of the forecast initial condi-
tion—the difference between the two simulations is rescaled 
to give the bred vectors.

In the geophysical data assimilation communities, the 
initial condition random perturbation is now known to be 
underdispersive, i.e. it underestimates the errors related to 
the coarsening of the state variable dynamics [7, 49, 60, 
115]. As such the model is overconfident. When an observa-
tion—often far from the ensemble—is assimilated, only very 
few particles—and in the worst case only one—are consid-
ered relevant. The others are discarded. This degeneracy is 
referred to as filter divergence. The weakness of the method 
can be explained by at least two facts. At the initial time, 
the random perturbations live in a huge state space. Com-
putational limitation leads to the setup of only a small-size 
ensemble, thus spanning only a small part of the state-space 
[60, 115]. As a consequence, without any adhoc compensa-
tion, the ensemble variance is underestimated. Moreover, the 
initial condition random perturbations are injected at small 
scales and are hence quickly diffused by the subgrid ten-
sor. From a dynamical system point of view, subgrid tensor 
makes small-scale components of the solution more stable. 
Without the fully resolved non-linear mechanisms yielding 
an energy redistribution, the particles tend to asymptotically 
align with the most unstable directions [60, 115, 146, 164, 
165]. Thus, as time evolves the ensemble spans a smaller 
and smaller space.

To mitigate the ensemble variance underestimation, a 
famous compensation method exists. It is called covariance 
inflation [2]. The ensemble covariance is increased (in an 
additive or multiplicative way) by a carefully-tuned param-
eter. This scalar can be identified through statistics estima-
tion in the observation space [162]. Indeed, in this space, 
the innovations are the differences between the predicted 
and the actual observations. By simple algebra, the variance 
estimation of that innovation—before the analysis step—can 
be related to the missing inflation factor, the badly-scaled 
state-vector covariance, the measurement-error covariance, 
and the matrix linking state vector and observations. Some 
operational weather forecasts centers rely on inflation [136]. 
In any cases, the ensemble covariance is often erroneous 
and such a compensation may lead to nonphysical behav-
iors, as exemplified in Fig. 1. Indeed, an ensemble spread 
underestimation – says a factor 2—due to for instance an 

overconfidence in the position of an eddy would lead to 
a (variance) inflation factor of 4. Thus, in one realization 
of the ensemble, if the eddy does not overlap with mean 
eddy, it will stay in the same place but will become 2 times 
stronger. Therefore, the ensemble mean square error will 
increase without pushing any realization closer to the truth. 
A popular inflation variant was introduced by Desroziers 
et al. [37]. From the a priori innovation covariance and the 
cross-covariance between a priori and a posteriori innova-
tions, it is possible to correct both the badly-scaled state-
vector covariance and the measurement-error covariance. 
Nevertheless, similar drawbacks may be expected.

4 � Stochastic Backscattering

Other works preferably address the modeling of errors 
related to wrong dynamics. Indeed, as long as all the scales 
are not resolved, subgrid dynamics are modeled rather than 
resolved. This introduces errors which grow in time due to 
chaotic behaviors. A natural way to address this UQ is to 
continuously introduce noise in the dynamics. Evolution 
laws no longer rely on bulk parameterizations i.e. determin-
istic models. They become Langevin equations expressed 
through Stochastic Differential Equations (SDE) or Stochas-
tic Partial Differential Equations (SPDE). Note that the Lan-
gevin equations can be non-linear with complicated random 
forcing and memory terms.

Langevin equations are not new in fluid dynamics. Sto-
chastic subgrid parameterizations have been developed 
before the use of ensemble forecasts in CFD. Nevertheless, 
most of these historical stochastic schemes have not been 
developed for UQ purposes—even though they can often 
be used to that end.

These first stochastic subgrid parameterizations generally 
try to mimic the intermittent back-scattering of energy from 
small scales toward larger scales. Several recent UQ meth-
ods are also based or inspired from the stochastic backscat-
tering literature. We briefly describe this literature below.

4.1 � Stochastic Lagrangian Methods

First, let us mention the stochastic Lagrangian models intro-
duced by S. B. Pope and coauthors (see [133], for a review). 
The Lagrangian fluid particles represent independent reali-
zations. Each particle moves with a local velocity which is 
itself the solution of a randomized Navier–Stokes model in 
a Lagrangian form. In addition to the mean pressure forc-
ing, the authors assume a relaxation mechanism toward the 
mean velocity and an additive space-time white noise. Its 
amplitude is proportional to the dissipation �D . In order to 
compensate the induced mean kinetic energy increase, the 
relaxation term includes a term proportional to �D∕TKE 
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Fig. 1   Inconsistency introduced by covariance inflation for a 2-mem-
ber ensemble of temperature fields (in Celsius degrees). Here, the 
optimal inflation factor is about 1.8. The inflation increases the vari-
ance without reducing the bias (even though the bias will be modified 
in the following data assimilation analysis step). Thus, it increases the 

point-wise Root Mean Square Error (RMSE, see Sect. 7.2 for a defi-
nition). Here, inflation makes ensemble members further away from 
the reference. Moreover, the inflation artificially creates water at 21.1◦ 
and at 14◦ from a water at temperature T ∈ [15.5◦, 19.5◦]
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where TKE denotes the turbulent kinetic energy. Depending 
on the complexity of the relaxation matrix, the full model is 
referred to as simplified Langevin model (SLM) or general-
ized Langevin model (GLM) [132]. In the second case, the 
relaxation matrix also depends on the mean shear and mean 
Reynolds stress tensor. The mean terms can be computed 
by averaging over particles since they are independent. As 
all coefficients of the SLM and GLM are deterministic, the 
solution is a Gaussian process. The Langevin models are 
simulated through Monte Carlo Markov Chain (MCMC). 
The refined Langevin model [134] is a variant which 
replaces the mean dissipation by a stochastic one in the SLM 
and GLM. The dissipation is assumed to follow another sto-
chastic equation which makes the dissipation probability law 
close to a log-normal distribution (i.e. the logarithm of the 
dissipation is approximately Gaussian). Sawford [153] also 
proposes a Lagrangian model where it is the Lagrangian 
acceleration which follows a (Gaussian) SLM-like model. 
Note that considering an acceleration evolution equation is 
formally equivalent to the inclusion of memory terms in a 
velocity evolution equation.

Berloff and McWilliams [5], Veneziani et al. [167] also 
consider Stochastic Lagrangian models. The slightly non-
linear resulting evolution models are defined on empirical 
grounds and Gaussian assumptions.

4.2 � Eulerian Gaussian Backscattering

The most famous Eulerian backscattering method is perhaps 
the Eddy-Damped Quasi Normal Markovian (EDQNM) 
model introduced by Orszag [118] and Leith [93]. It closes 
the large-scale Navier–Stokes equations in the Fourier space 
by neglecting some phase correlations in the non-linear 
terms while keeping the energy constant. Chasnov [24] uses 
this framework to set up a forced-dissipative Navier–Stokes 
model where the Eddy Viscosity is scale-dependant and the 
forcing is Gaussian, homogeneous and isotropic in space 
and uncorrelated in time. Replacing non-linear interactions 
by a damping term and a Gaussian forcing is now common 
practice. This is in particular used to setup evolution laws 
of subgrid scales where accuracy is of lower concern. The 
solutions are in this case Gaussian processes. Structural Sta-
bility Theory (S3T) is one example in that spirit [44]. The 
Quasi-Linear (QL) approximation separates the non-linear 
deterministic dynamics of the mean field and the linearized 
randomly-forced dynamics of fluctuations. Then, stability 
analyses are applied to the augmented state-vector of mean 
and covariance in order to reveal and characterize various 
turbulent phenomenon. Stochastic superparameterization 
(SSP) proposes a similar model [64]. The point approxima-
tion separates the large-scale and the small-scale dynamics. 
The small-scale evolution law is linearized and corrected 
by the introduction of noise and damping terms. To ensure 

energy conservation in the stationary regime, noise vari-
ances and damping coefficients are related. Then, the sec-
ond order moments of the solution are known analytically 
and can feed the subgrid tensor expression of the mean 
large-scale evolution law. Without involving any theoretical 
closure, Berloff [4] considers a Gaussian forcing as well. 
Yet its noise is inhomogeneous in space and correlated in 
time. Well specified inhomogeneity brings phase informa-
tion making the model more accurate and the forcing more 
efficient.

4.3 � Eulerian Non‑Gaussian Backscattering

Phase information can also be encoded by multiplicative 
noises. Besides, multiplicative noises are the most common 
non-Gaussian forcing in CFD. Leith [94] multiplies a white 
Gaussian noise by a function of the resolved local strain rate. 
Schumann [155] uses a quadratic function of a homogeneous 
Gaussian noise. Brankart [12] adds at each time step a multi-
plicative noise to the active tracers (salinity and temperature) 
before computing the corresponding density. After this, the 
density is averaged over realizations. The non-linearity of 
the state-equation makes this transitional variability non-
negligible and improves the simulation results.

In contrast, Mana and Zanna [107] use a non-Gaussian 
noise process. It is uncorrelated in time and space with a 
variance that depends on the resolved potential vorticity 
(PV) gradient.

Except Schumann [155], all these methods defined on 
empirical grounds have a common characteristic: the fac-
tor of the multiplicative noise—or the noise variance—is 
a function of the gradient of the transported quantity. This 
comment is also valid for the stochastic Lagrangian models 
of S. B. Pope and coauthors. This suggests a link between 
stochastic backscattering and turbulent dissipation, but 
the justification of this link is generally either unclear or 
arbitrary.

5 � UQ for Errors Induced by a Coarsening 
Process

5.1 � Gaussian Additive Noise

The simplest random dynamics are defined from linear 
Langevin equations with additive Gaussian noise. This has 
already been discussed above for stochastic backscattering 
methods. We may add the linear inverse models [128, 129]. 
Keating et al. [79] also use a linear evolution model with 
Gaussian noise for a filtering purpose. However, the param-
eters of the models are themselves Ornstein-Uhlenbeck 
(OU) processes. An OU process is a gaussian process with 
an exponential covariance in the stationary regime. Such a 
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process corresponds to an Auto-Regressive (AR) process in 
discrete time. In Keating et al. [79], OU parameters make 
the evolution model solution not Gaussian and more flexible. 
This method—well known in the filtering community—is 
referred to as Stochastic Parameterized Extended Kalman 
Filter (SPEKF) [60].

In geophysical fluid dynamics data assimilation, dynam-
ics are often non-linear. Nevertheless, Gaussian additive ran-
dom forcings are still widely used. Tandeo et al. [162] review 
the additive-Gaussian-noise-covariance estimation proce-
dures. Moment-based, maximum likelihood, and Bayesian 
estimations are detailed. Several authors also define correla-
tion matrices as solutions of diffusion equations parameter-
ized from observed correlation lengths [119]. Others learn 
a spatial mapping which transforms the heterogeneous and 
anisotropic spatial covariance into a homogeneous and iso-
tropic one using wavelets [112, 113] or differential geometry 
tools [120]. Then, a classical covariance model can be fitted.

5.2 � Empirical Non‑Gaussian Noises

Among other empirical stochastic models, the Stochastic 
Perturbed Physics Tendency scheme (SPPT) introduces 
a correlated multiplicative noise [17]. All parameterized 
tendencies are multiplied by the same uniform variable in 
[0.5, 1.5]. The same random variable is used in a fixed space-
time window. This window sets the noise spatio-temporal 
correlations. Shutts [157], Berner et al. [6, 7] have proposed 
another method constructed from a spatially homogeneous 
and isotropic Gaussian noise. Then, they multiply it by the 
dissipation rate. This method is called Stochastic Kinetic 
Energy Backscatter (SKEBS). As in Schumann [155] and 
Brankart [12], the noise is defined from an Ornstein-Uhlen-
beck (OU) process with a very small correlation time. As 
for many stochastic subgrid parameterization, the factor of 
the multiplicative noise is again a function of the gradient 
of the transported quantity.

We may also cite a recent variant of SKEBS referred to 
as Stochastic Convective Backscatter (SCB) scheme [158]. 
This scheme is focused on atmospheric flow applications. A 
Gaussian noise white in space and time is weighted by the 
vertical variation of the parameterized convective updraught 
and downdraught mas fluxes. Then, a spatio-temporal 
smoothing imposes the spatial and temporal correlations.

SPPT and SKEBS methods have been successfully 
applied in operational weather and climate forecast centers 
[15, 16, 49, 109, 125, 156]. Nevertheless, many drawbacks 
of these methods have been reported. Above all, conserva-
tion laws (e.g. energy and mass conservations) are violated 
[95, 143]. Precipitation biases have also been observed [15]. 
Moreover, the random forcing scales differ from the scales 
of the error sources that are meant to be quantified [143].

5.3 � Energy‑Budget‑Based Noises

Energy conservation and redistribution being fundamental 
aspects of physics, several authors have developed ad hoc 
schemes to deal with conservation laws.

5.3.1 � Existing Schemes

Sapsis and Majda [150] introduce the Modified Quasilinear 
Gaussian (MQG) model for—but not restricted to— dimen-
sionally reduced systems [148, 149]. This model approxi-
mates the third-order moment in the covariance evolution 
law in order to redistribute the right amounts of energy 
between modes. Based on stationary regime information, 
dampings and noises are specified in that way.

Earlier in this paper, we have mentioned the Stochastic 
superparameterization (SSP) [64], the EDQNM approxi-
mation and other related methods. In these approaches, the 
random forcing is also specified from an imposed mean 
energy balance. Nevertheless, these methods are not a priori 
designed for an UQ purpose.

Similar energy mean budgets have recently been dis-
cussed by several authors. Majda [103] refers to this energy 
mean as the statistical energy. The author derives the evolu-
tion law of this energy by adding the evolution equations of 
the mean energy and the evolution equation of the integrated 
variance. However, Majda [103] does not specify the ran-
dom forcing. This is why the latter does not a priori bal-
ance the turbulent diffusion. Farrell and Ioannou [44] also 
study the energy mean of stochastic fluid dynamics systems 
especially under quasi-linear approximations and with an 
additive Gaussian forcing. Gugole and Franzke [65] enforce 
the energy conservation by projecting their random forcing 
into the space of constant energy.

As cited previously, SKEBS parameterization [6, 7, 157] 
backscatters a given portion of the global dissipated energy 
using a flow-dependent correlated noise. Jansen and Held 
[76] work with a similar idea. Yet, they consider a hyper-vis-
cous diffusion and a noise white in space and time. Dwivedi 
et al. [41] also consider hyper-viscosity and neglect spatial 
correlations but they keep time correlations.

5.3.2 � A New Random Forcing Derived from Large‑Scale 
Subgrid Dissipation Models

We here propose a new energy-budget-based stochastic sub-
grid model.

In practice, large-scale fluid dynamics models involve 
dissipation operators called subgrid models. They stabi-
lize the numerical simulations and mimic the action of 
the unresolved small scales by draining the energy at 
high wavenumbers. Simple subgrid models often take the 
form of classical Laplacian operator or of higher-order 
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hyperviscosity operators (typically, some power of a 
Laplacian). Let us consider the dynamic of a fluid prop-
erty q. It is assumed to be transported up to a dissipation 
operator denoted L and a stochastic forcing �—which is a 
centred process uncorrelated in time:

where D∕Dt = �t + v ⋅ � stands for the material derivative 
operator.

Through Itô calculusa conservation of the energy 
mean—� ∫� 1

2
q2—would imply:

where

is the stochastic forcing variance conditioned on field q at 
time t and < q, q > denotes the quadratic variation term. In 
order to maintain a desired amount of energy dissipation, 
we introduce a scaling factor 𝜁 > 0 in the above balance. 
Specifically, we want to impose:

Now, for a given dissipation operator L , we will construct a 
noise � which meets the desired balance (4). If L is a nega-
tive auto-adjoint operator—which is generally the case—we 
can define an operator H which is such that

with H⋆ denoting the adjoint of operator H . More precisely, 
for the Laplacian, bi–Laplacian or higher–order hyperviscos-
ity operators, this operator H reads,

where 𝜁 =

√
2𝜁

dt
 , p is a positive integer, � a constant and � 

a—possibly spatially-varying—matrix.
Then, for specific deterministic subgrid tensor L , if 

the stochastic forcing (conditional) variance integral, 
∫�(H[q])2 , can be set to the integral ∫� ‖H[q]‖2 , it is 

(1)
Dq

Dt
= L[q] + �,

(2)
0 = �∫𝛺

d

dt

(
1

2
q2
)
= �∫𝛺

(
q

d

dt
q +

1

2

d

dt
< q, q >

)

= �∫𝛺

(
qL[q] +

1

2
(H[q])2dt

)
,

(3)(H[q](x, t))2
△

= �(�2(x, t)|q(∙, t)),

(4)∫�
q
(
−

2�

dt
L[q]

)
= ∫�

(H[q])2.

(5)−
2𝜁

dt
L = HH⋆,

(6)H[q]
△

=

⎧⎪⎪⎨⎪⎪⎩

𝜁��q if L[q] = � ⋅ (��T
�q),

𝜁� ⋅ (��q) if L[q] = −� ⋅

�
��

�
� ⋅ (��q)

��
,

𝜁𝛼�𝛥pq if L[q] = 𝛼2𝛥2p+1q,

𝜁𝛼𝛥pq if L[q] = −𝛼2𝛥2pq,

possible then to control the energy dissipation and meet 
the desired balance (4). Indeed, in that case, we have:

Nevertheless, to simulate the stochastic forcing, knowing 
its global variance is not enough. We also need to choose its 
spatial structure (e.g. the local variation of the variance, its 
spatial correlations). In this purpose, we express the noise 
on a convenient orthonormal basis of L2(�) (e.g. a wavelet 
basis) denoted {ek}k≥0:

where the �k are independent Gaussian white noises of unit 
variance and:

Then, by definition of H and by the Parseval theorem, the 
random forcing (conditional) variance integral is given by:

Therefore, Eq.  (7) is valid and the stochastic forcing � 
defined by (8) and (9) meets our target energy balance (4).

Therefore, given a numerical dissipation L together with 
a chosen orthonormal basis, it is always possible to define a 
noise (8) that respects the assumed energy balance (4). Note 
however that this balance constitutes only a global balance. 
Indeed, locally in space, the random forcing variance is:

and moreover,

The choice of a given basis {ek}k≥0 in this model is of 
crucial importance, as it influences in particular the variance 
heterogeneity and the correlation lengths of the random forc-
ing. In order to be close to a local energy balance, basis 
functions with small supports can be selected. This enables 
us to restrain the inequality (11) and make it closer to an 
equality. For instance, Fourier modes have a large support 
and would lead to a homogeneous random forcing (since 

(7)
∫𝛺

(H[q])2 = ∫𝛺
‖H[q]‖2 = ∫𝛺

qH⋆H[q]

= ∫𝛺
q
�
−

2𝜁

dt
L[q]

�
.

(8)�(x, t) =
∑
k≥0

�k(t)�k(t)ek(x),

(9)�k = ∫�
‖H[q]‖ ek.

(10)
��

(H[q])2 = ��
�(�2(x, t)�q(∙, t)) = �

k≥0
��k�2

= ��
‖H[q]‖2.

(11)(H[q])2 =
�
k≥0

��k�2�ek�2 ≠
�����
�
k≥0

�kek
�����

2

= ‖H[q]‖2,

(12)‖H[q]‖2 ≠ qH∗H[q] = q
�
−

2�

dt
L[q]

�
.
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|ek| = cst ). In this case, the inequality (11) would be 
(H[q])2 =

1

�(�)
∫� ‖H[q]‖2 ≠ ‖H[q]‖2(x, t) , where �(�) is 

the measure of the spatial domain � . In contrast a basis of 
regularized Dirac functions ek(x) = �(x − xk)—defined on 
the grid points xk—have near zero-measure supports. The 
inequality (11) would hence become an equality. Neverthe-
less, such an infinitesimally small basis function support 
would induce an almost zero random forcing correlation 
length. We consider this behavior as nonphysical. According 
to that analysis, a wavelet basis seems a promising trade-off 
and will be used in the numerical Sect. 8.

5.4 � Physically‑Based Noises

We now come back to the literature review. In fluid dynam-
ics, due to non-linearities, the targeted probability density of 
the solution is highly non-Gaussian and relevant stochastic 
dynamical models are difficult to derive. In this perspective, 
an attractive path would be to infer randomness from physics 
[8, 34]. Yet as Navier–Stokes equations are deterministic, 
this path is not straightforward.

5.4.1 � Time‑Scale Separation

Averaging and homogenization To derive large-scale fluid 
dynamical model, the time-scale separation assumption is 
convenient. In the seventies, Hasselmann [70] already relied 
on it for geophysical fluid dynamics. In his seminal work, 
the large-scale dynamics were encoded by both mean terms 
and noise terms. However, eventually only simple multidi-
mensional OU processes were considered.

The time-scale separation assumption is also the founda-
tion of the more rigorous averaging and homogenization the-
ories [49, 57, 60–62, 88, 115, 122]. As the time-scale separa-
tion goes to infinity, the large-scale dynamics will converge 
according to averaging or to homogenization depending on 
the structure of the global model. The global dynamics as 
well as the limit large-scale dynamics can be differential 
equations or SDEs. In the large-scale equation, terms which 
are only functions of the small-scale variable often tend to 
converge to a white-noise-in-time term in the Stratonovich 
sense with a covariance of the Green-Kubo type. Neverthe-
less, it is not always true for nonlinear dynamics. Some-
times, the noise has to be understood in the sense of Ito or 
Marcus stochastic integral. In the last case, the noise is a 
Levy process [61, 62].

A successful application of the homogenization the-
ory in geophysics is the MTV scheme [48, 104–106]. 
MTV refers to the names of the three main authors: 
Majda, Timofeyev and Vanden-Eijnden. In practice, the 
non-linearity of the small-scale equation is empirically 
replaced by a noise term and a damping term before the 

homogenization procedure. The homogenized dynamics 
obtained are cubic with correlated additive and multipli-
cative (CAM) noises. Even without dealing with Levy 
processes, this structure is able to produce intermittency 
and extreme events especially because of the CAM noise. 
This specific form has also been used to infer data-driven 
models. Peavoy et al. [124] proposed an example of such a 
model which uses energy constrained Bayesian estimators 
and artificial additional observations through Brownian 
bridge.

Another method called invariant manifold theory also 
invokes a time-scale separation. Yet it relies directly on the 
SDE solution rather than on its probability density function 
[57, 60]. This scheme provided good UQ skills especially 
because of the multiplicative noise appearing in the limit 
dynamics. Chekroun et al. [26] describes a similar problem 
for geophysical fluid dynamics on the so-called parameter-
ized manifolds with small Rossby number.

To conclude on these methods, for complicated non-lin-
ear dynamical systems, it is still not clear how to perform 
homogenization and when this is possible. Moreover, the 
theory does not make the noise covariance explicit enough 
and it has to be estimated on data. During this step, some 
Gaussian approximations are usually done when estimat-
ing the coefficients of the model. Some homogenization 
methods like the MTV algorithm may suffer from energy-
conservation issues. Nevertheless, workarounds exist [47, 
75]. In addition, the homogenization methods have shown 
successful results in the context of reduced order models and 
suggest that geophysical stochastic fluid dynamic models 
should involve CAM noises.

Edgeworth expansion In order to alleviate the time scale 
gap assumption of averaging and homogenization proce-
dures, Edgeworth expansions goes to higher order in time 
scale ratio [169].

Velocity time scale separation and skew-symmetric noises 
The Kraichnan model is an idealization of passive tracer 
turbulence [53, 85, 86]. A tracer is forced and advected by 
two independent spatially-homogeneous time-uncorrelated 
Gaussian processes. In contrast to the previous section, the 
time scale gap between the unresolved and the resolved 
dynamics is directly assumed, without going to a limit. The 
forcing of the Kraichnan model lives at large spatial scales 
whereas the energy of the random advecting velocity is dis-
tributed over the spatial scales in a self-similar way. Since 
this velocity is also assumed divergence-free, the advect-
ing term is here a skew-symmetric multiplicative noise of 
the tracer dynamics. It is a well-studied and well-known 
model in statistical physics [43, 53, 82, 104]. In particular, 
it is known that the tracer gradient norm has a log-normal 
point-wise law. Some authors have also added a determin-
istic advecting velocity to the delta-correlated random term 
(e.g. [82]).
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More recently, several authors have considered the ran-
dom transport of fluid dynamics quantities by the combi-
nation of two velocity components: a time-correlated one 
and a time-uncorrelated one. Unlike the Kraichnan model, 
these stochastic subgrid parameterizations are not restricted 
to the linear dynamics of passive tracers and can consider 
large-scale time-correlated flows. In the same time, these 
new schemes still encompass skew-symmetric multiplica-
tive noises. The mathematical theory relies on stochastic 
calculus and Ito-Wentzell formula [87]. Brzeźniak et al. [13] 
first introduces the idea. Then, Mikulevicius and Rozovskii 
[114] and Flandoli [46] modify the formula. Their works 
have focused on pure mathematical aims: existence and 
uniqueness of SPDE solutions. Neves and Olivera [116] also 
studied the wellposedness of similar SPDE using the deriva-
tion of the previous authors. Models under location uncer-
tainty (LU) [18, 23, 110, 137, 139, 140, 142] and Stochastic 
Advection by Lie Transport (SALT) [31–33, 35, 54, 73, 142] 
are new types of stochastic subgrid tensors based on that 
stochastic transport. These schemes will be deeply detailed 
in Sect. 6. Sardeshmukh and Sura [151], Sardeshmukh et al. 
[152] also highlight the relevance of skew-symmetric mul-
tiplicative noises and its link with an advecting velocity 
time scale separation assumption. Besides, this separation 
assumption can be rigorously derived from homogenization 
technique [30]. With similar assumptions but different math-
ematical tools (Taylor series instead of stochastic calculus) 
Dukowicz and Smith [40] obtain results for the mean tracers 
which coincide with LU framework. Nevertheless, equations 
for the mean is not sufficient for UQ purposes.

5.4.2 � Memory Effects

When there is no time-scale separation, the large-scale sys-
tem can become non-Markovian. For deterministic dynam-
ics, this is readily shown by the Mori-Zwanzig equation 
[57, 62]. Indeed, this explicit expression of the large-scale 
observables of interest involves a memory term. Accord-
ingly, some authors have proposed non-Markovian stochastic 
parameterizations (e.g [25, 83, 84, 101]). Even though these 
memory effects are realistic, it is important to note that their 
simulations imply an increase of the state-space dimension 
and hence an additional computational cost.

5.4.3 � Other Approaches Based on Statistical Physics

Using Ruelle response theory, Wouters and Lucarini [170] 
have proposed a systematic way to approximate non-linear 
dynamical systems. Their main assumption is the weak cou-
pling between two terms of the original evolution equation. 
In this approximated dynamics, a deterministic first-order 
correction appears. At second order, there is also a memory 
term and a stochastic forcing.

In quasi direct interaction closure (DIA), Frederiksen [51] 
proposed to simplify the equations for the mean flow and 
the fluctuations by assuming that the fluctuation two-time 
covariance function and the Green function of the diffusion 
equation (associated with eddy viscosity) are quasi-diago-
nal in Fourier space. We recall that a diagonal covariance 
in Fourier space means homogeneity in spatial space.One 
limitation of the method is the restriction to Fourier-based 
numerical simulations.

Plant and Craig [131] have proposed a physically-based 
stochastic subgrid parameterization to model mass flux 
induced by clouds updrafts and downdrafts. Nevertheless, 
its application is a priori limited to weather forecasts.

6 � Dynamics Under Location Uncertainty 
and Stochastic Advection by Lie Transport

In this section, we focus on a new family of stochastic sub-
grid parameterizations. These schemes mainly rely on a sto-
chastic transport. Therefore, in this section, we first explain 
the principle of this random transport and review its main 
properties. Most of these theoretical results come from 
Mémin [110] and Resseguier et al. [140]. The Stochastic 
Advection by Lie Transport can be introduced alternatively 
through stochastic differential geometry (e.g. [73]). Then, we 
present the randomized Euler equations of this model family. 
Finally, we review the existing parameterization choices in 
this stochastic framework and propose a new one.

6.1 � Stochastic Transport

6.1.1 � Informal Description

CFD introduces de facto a coarse scale truncation of the 
system. Those dynamical models emanate from physical 
deterministic representations whose solutions are assumed 
to be smooth (i.e. differentiable) in time. Although small-
scale fluid flow velocities can be characterized by local and 
intermittent energy bursts, possibly associated with infinites-
imal characteristic time-scales, it is generally assumed that 
these unresolved flow components remain smooth in time. 
At the model resolution, the resolved (large-scale) flow can 
thus be considered as a coarse-grained representation of the 
actual Eulerian flow, with the unresolved flow component 
rapidly varying in time. From an observer point of view, 
such sub-grid dynamics can be conveniently modeled by a 
delta-correlated process. The smooth velocity field, denoted 
w , represents a large-scale, possibly random, component 
continuous in time. The unresolved contribution, expressed 
as �Ḃ , is then assumed Gaussian, volume preserving (diver-
gence-free) and uncorrelated in time. This contribution can 
be non-homogeneous and anisotropic in space. Due to the 
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irregularity of the resulting flow, the transport of a conserved 
quantity, q, by the whole velocity, defined as

reads in an informal stochastic way as

with a drift velocity corrected as

Hence, the deterministic (for a fixed realization of velocity 
field w ) evolution equation is replaced by a stochastic equa-
tion with respect to �Ḃ . As a result, the conserved quantity 
is now advected by an “effective” velocity, w⋆ , taking into 
account the possible spatial variation of the small-scale 
velocity variance and the possible small-scale velocity diver-
gence. This modified advection is indeed essential to take 
into account essential physical effects due the small-scale 
velocity inhomogeneity [22, 130]. The random forcing term 
in (14) relates to the advection by the unresolved velocity 
�Ḃ = �

dBt

dt
 . This term continuously backscatters random 

energy to the system. The diffusion term then accounts for 
the mixing effect of the small-scale random velocity. This 
term plays a role similar to the eddy diffusivity models intro-
duced in classical large-scale representations [55, 56, 96, 
159], in analogy with the molecular diffusion mechanism 
[11]. In particular, for a homogeneous and isotropic small-
scale velocity the turbulent diffusion is also homogeneous 
and isotropic:

The inhomogeneous and anisotropic diffusion coefficient 
matrix, a , is then defined by the one-point one-time covari-
ance of the unresolved displacement per unit of time:

This ensures an exact energy balance between the amount of 
diffusion and the random forcing.

6.1.2 � Stochastic Flow

To derive more formally the evolution law of a scalar quan-
tity transported by a stochastic flow, the stochastic Lagran-
gian description of the infinitesimal displacement associated 
with a particle trajectory Xt writes:

(13)q(Xt+�t, t + �t) = q(Xt, t)

(14)

𝜕tq + w⋆
⋅ �q

���

Corrected

advection

= � ⋅

(
1

2
a�q

)

�����������
Diffusion

− �Ḃ ⋅ �q
���

Random

forcing

,

(15)w⋆ = w −
1

2
(� ⋅ a)T + �(� ⋅ �)T .

(16)a = a0�d and � ⋅

(
1

2
a�q

)
=

1

2
a0�q.

(17)a =
�

{
�dBt

(
�dBt

)T
}

dt
.

In this equation, the second term explicitly figures the flow 
location uncertainty. Formally, this random field is defined 
over the fluid domain, 𝛺 ⊂ ℝd , from a d-dimensional 
Brownian function Bt . Such a function can be interpreted 
as a white noise process in space and a Brownian process 
in time. Formally it is a cylindrical Id-Wiener process (see 
[36, 135], for more information on infinite dimensional Wie-
ner process and cylindrical Id-Wiener process). The time 
derivative of the Brownian function, in a distribution sense, 
is informally denoted �Ḃ = �

dBt

dt
 , and is a white noise dis-

tribution. The spatial correlations of the flow uncertainty are 
specified through the diffusion operator �(., t) , defined for 
any vectorial function, f  , through the matrix kernel �̆(., ., t):

This quantity is assumed to have a finite norm. More pre-
cisely, the operator � is assumed to be Hilbert-Schmidt. We 
also assume that the above expression have periodic or null 
boundary conditions on the domain frontier. The resulting 
d-dimensional random field, �(x, t)dBt , is a centered vecto-
rial Gaussian function, correlated in space and uncorrelated 
in time with covariance tensor:

Hereafter, the diagonal of the covariance tensor, a,—also 
denoted as ��T—will be referred to as the variance tensor:

Cotter et al. [30] have rigorously shown that the decompo-
sition (18) corresponds to the limit of a deterministic flow 
when the correlation time of the small-scale velocity goes 
to zero.

6.1.3 � Scalar Advection

For a fluid flow defined by Eq. (18), the material derivative 
(expressed in Ito form) of a quantity q writes:

(18)dXt = w(Xt, t)dt + �(Xt, t)dBt.

(19)�(x, t)f
△

=∫𝛺
�̆(x, z, t)f (z, t)dz.

(20)Cov(x, y, t, t�)
△

= �

{(
�(x, t)dBt

)(
�(y, t�)dBt�

)T
}
,

(21)= ∫𝛺
�̆(x, z, t)�̆T(y, z, t)dz 𝛿(t − t�)dt.

a(x, t)�(t − t�)dt = Cov(x, x, t, t�).
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where the quantity q is forced as follows

The time increment dtq can be interpreted as the analog of 
the partial time derivative �tq in deterministic partial dif-
ferential equations. The above expression—derived by 
Resseguier et al. [139]—is a reformulation of the Ito-Went-
zell formula (theorem 3.3.1 page 91 [27, 87]).

Stratonovich notations Equations (22) and (23) rely on the 
so-called Ito notations. They are convenient to derive ensem-
ble mean—since terms in dBt are always centered—and for 
the numerical implementations. From these notations, we also 
get more insights on the involved physical processes (e.g. the 
turbulent diffusion). Nevertheless, it is also possible to write 
the very same equations in Stratonovich notations (i.e. with 
“ ◦dBt ” instead of “ dBt”):

where

is the Stratonovich material derivative and

is the Stratonovich drift of the flow (18). The Stratonovich 
material derivative, DS

t
q , coincides with the Ito material 

(22)

Dtq
△

=
(
q(Xt+dt, t + dt) − q(Xt, t)

)
|Xt=x

=

dtq
���

△

= q(x, t + dt) − q(x, t)

Time increment

+
(
w⋆dt + �dBt

)
⋅ �q

�������������������������
Advection

−� ⋅

(
1

2
a�q

)

�����������

Turbulent

diffusion

dt

+ tr
((
�T

�
)
HT

)
�������������

Coupling

turbulence-forcing

dt,

(23)Dtq = Fdt +HTdBt.

(24)

DS
t
q = dtq

⏟⏟⏟

= q(x, t + dt∕2)

−q(x, t − dt∕2)

Centered

time increment

+
(
wSdt + �◦dBt

)
⋅ �q,

(25)

DS
t
q
△

=

(
q

(
X
t+

dt

2

, t +
dt

2

)
− q

(
X
t−

dt

2

, t −
dt

2

))

|Xt=x
,

(26)= Dtq −
1

2
tr
((
�T

�
)
HT

)
dt,

(27)=
�
F −

1

2

d

dt
⟨HT ,Bt⟩ − 1

2
tr
��
�T

�
�
HT

��
dt +HT

◦dBt,

(28)wS = w −
1

2

d∑
i=1

�i��
T

i∙
= w∗ −

1

2
�(� ⋅ �)T ,

derivative, Dtq , for H = 0 , i.e. for time correlated forcing 
in the transport Eq. (23)— which is generally the case. The 
Stratonovich drift, wS , coincides with the corrected drift, w∗ , 
for divergence-free unresolved velocity –, which is the most 
common case. Equation (24) is the Ito-Wentzell formula for 
Stratonovich notations [27, 87]. The reader not familiar with 
stochastic partial differential equations can also refer to sec-
tion 10.1.2 of Resseguier [137] for more details. Equations 
(27) and (26) are derived in “Appendix 2” by application of 
the Stratonovich-Ito-notation-change formula ([87], theo-
rem 3.2.5 page 60).

6.1.4 � Energy

Energy conservation To ensure a stochastic isochoric 
flow, incompressibility constraints on the modified drift, 
� ⋅ w⋆ = 0 and on the small-scale velocity, � ⋅ � = 0 , are 
required. One can show [139] that those two constraints 
enable to establish a strong energy conservation property 
for any realizations of a tracer (i.e. with zero forcing in (23)):

The noise energy intake is exactly compensated by the dif-
fusion term. In particular, the mean energy, � ∫� 1

2
q2 , is also 

conserved. So, the LU-SALT also meets the balance (4) of 
Sect .   5 .3.2 (with � = 1 ,  L[q] = � ⋅

(
1

2
a�q

)
 and 

(H[q])2 = ‖H[q]‖2 = 1

dt
�qTa�q ) even though the SALT-LU 

random forcing is not of the form (8) in general.
The energy conservation (29) also implies that the 

decrease of the energy of the mean always goes with a vari-
ance increase:

This process is useful for UQ. While the tracer interacts with 
the unresolved scales, the tracer is continuously randomized.

Local energy in spatial space Since Dt is a derivative 
(considering Lagrangian coordinates), it is straightforward 
that:

Hence, all the discussions about the tracer q are also valid 
for the local energy 1

2
q2.

Local energy in Fourier space (spectrum) Here, 
q̂(k, t)

△

= ∫𝛺 q(x, t)e−ik⋅xdx stands for the Fourier transform 
of q. In order to get some insights on where the uncertainty 
goes in Fourier space, we can derive the time evolution 
of the tracer spectrum 𝛤 (k, t) = �|q̂(k, t)|2 . Indeed, if the 
small-scale velocity is homogeneous and isotropic in space, 
we can show (see “Appendix 1”) that:

(29)
d

dt ∫�

1

2
q2 = 0.

(30)
d

dt ∫�

1

2
Var(q) = −

d

dt ∫�

1

2
(�(q))2,

(31)Dt

(
1

2
q2
)
= qDtq = 0.
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where ℜ{z} is the real part of z and the spectrum flux 
– induced by the small-scale velocity— from the wave-vec-
tor k − k� toward the wave-vector k is:

where

The first term of the budget (32) encompasses the usual 
large-scale non-linear effects. The second term is the tracer 
spectrum increase which is due to the small-scale velocity. 
This energy flux does not depends on the tracer phases, but 
only on the tracer spectrum. Furthermore, the tracer mode 
q̂(k − k�, t) gives energy to q̂(k, t) , by the intermediate of 
�dBt if and only if:

In this case, the energy transfer from |q̂(k − k�, t)|2 toward 
|q̂(k, t)|2 is mostly a random process, since it is due to the 
positive difference between the noise energy intake – which 
is a random process—and the turbulent dissipation. Moreo-
ver, if we assume that the (bidirectional or tridirectional) 
spectrum is decreasing with the wave number ‖k‖ and that 
the dimension d = 2 , a backscattering of energy from the 
small-scale Fourier mode q̂(k − k�, t) to the large-scale Fou-
rier mode |q̂(k, t)| > |q̂(k − k�, t)| implies:

Note that this results holds even if the statistics of the small-
scale velocity depends on the tracer q, as long as the small-
scale velocity is homogeneous and isotropic.

Moments of passive tracers Consider now that the expecta-
tion corresponds to a conditional expectation given the effec-
tive drift. This applies to passive scalar transport for which the 

(32)

𝜕t𝛤 (k, t) =
2

(2𝜋)d
𝔼ℜ

{
�w ⋅ �q(k, t)q̂(k, t)

}

�����������������������������������������
Usual spectrum variation

+ ∫
ℝd

F𝜎(k, k
�, t)dk�

���������������������

Noise-induced

spectrum flux

,

(33)
F�(k, k

�, t) =
‖k‖2
(2�)d

��(k
�, t)

�
sin2((k̂, k�))� (k − k�, t) −

1

d
� (k, t)

�
,

(34)��(k
�, t) =

1

dt
�‖�̂dBt(k

�, t)‖2.

(35)𝛤𝜎(k
�, t) ≠ 0 and

�q̂(k, t)�
�q̂(k − k�, t)� <

√
d
���sin((�k, k

�))
���.

(36)
����cos

�
𝜋

2
− (�k, k�

����� >
1√
2
= cos

�
𝜋

4

�

(37)
i.e.

(
k̂, k�

)
modulo � = −

(
̂k, (k − k�)

)
modulo � ∈

[
�

4
,
3�

4

]
.

drift does not depend on the tracer. In Eq. (22), terms in dBt 
have zero-mean, and the mean passive scalar evolution can be 
immediately derived taking the conditional expectation of the 
stochastic transport:

Since w∗ is divergent-free, it has no influence on the energy 
budget. The mean field energy decreases with time due to 
diffusion. As for the variance, its evolution equation, derived 
in Resseguier et al. [139], reads:

This is also an advection-diffusion equation, with an addi-
tional source term. Integrating this equation on the whole 
domain, with the divergent-free condition, and considering 
the divergence form of the first right-hand term, we obtain

It shows that the stochastic transport of a passive scalar 
creates variance. The dissipation that occurs in the mean-
field energy equation is exactly compensated by a variance 
increase. This mechanism is very relevant for ensemble-
based simulations. The uncertainty modeling directly incor-
porates a large-scale dissipating sub-grid tensor, and further 
encompasses a variance increase mechanism to balance the 
total energy dissipation. Such a mechanism is absent in 
ensemble-based data assimilation development [7, 60, 160].

6.1.5 � Extensive Properties : Reynolds‑Transport Theorem

Similar to the deterministic case, the stochastic Reynolds trans-
port theorem shall describe the time differential of a scalar 
function, q(x, t) , integrated over a material volume, V(t) , trans-
ported by the random flow (18):

This expression, rigorously derived in Resseguier et al. 
[139], was first introduced in a slightly different version by 
Mémin [110]. In most cases, the unresolved velocity compo-
nent, �Ḃ , is divergence-free and, the source of variations of 

(38)
𝜕t�(q) + w⋆

⋅ ��(q)
���������

Advection

= � ⋅

(
1

2
a��(q)

)

�����������������
Diffusion

.

(39)

𝜕tVar(q) + w⋆
⋅ �Var(q)

�������������
Advection

= � ⋅

(
1

2
a�Var(q)

)

���������������������
Diffusion

+ (��(q))Ta��(q)
�������������������

Variance intake

.

(40)
d

dt ∫�
Var(q) = ∫�

(�𝔼(q))Ta�𝔼(q) ⩾ 0.

(41)
d∫

V(t)

q = ∫
V(t)

[
Dtq + � ⋅

(
w⋆dt + �dBt

)
q

+ d

⟨
∫

t

0

Dt�q,∫
t

0

� ⋅ �dBt�

⟩]
.
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the extensive property ∫
V(t)

q is time-differentiable, i.e. with 
a differential of the form d ∫

V(t)
q = Fdt . In such a case, for 

an arbitrary volume, the transport theorem takes the form 
Dtq = fdt , and the material derivative can be replaced by the 
Eq. (22) to provide an intrinsic expression of this stochastic 
transport theorem.

6.2 � Euler Models

We will now express the incompressible Euler models 
existing in this family of random schemes. The Euler model 
under Location Uncertainty (LU) differs from Stochastic 
Advection by Lie transport (SALT) Euler model. For sake of 
simplicity and in contrast to the rest of the paper, we present 
them only in their Stratonovich forms.

Additionally, in this review, we will not considered 
the compressible case, since it brings other complexities. 
Accordingly, the density � is assumed to be constant. Using 
the mass conservation, this implies the following diver-
gence-free constraints [110, 139]:

After presenting SALT and LU Euler models, we will 
present a deterministic LES-like model refers to as pseudo-
stochastic model. It has also been referred to as Euler 
model under Location Uncertainty [21, 28, 29, 69, 110, 
138, 139, 141]. Therefore, we briefly explain it here for 
disambiguation.

6.2.1 � Euler LU

The Euler LU assumes stochastic transport of the Ito drift w 
up to some forcings:

The forcings can also encompass other terms (e.g. viscous 
terms, time-uncorrelated pressure forcing). By the properties 
of the stochastic transport, the Navier–Stokes LU conserves 
the (Ito) kinetic energy, ∫� 1

2
‖w‖2 (chapter 8 of [137]).

6.2.2 � SALT Euler

In contrast, the SALT Euler is derived from differential 
geometry arguments with a Kelvin circulation preservation 
constraint and reads:

(42)� ⋅ w∗ = 0,

(43)� ⋅ � = 0.

(44)

Dtw = DS
t

w
⏟⏟⏟

Due to the

transport

of �w

=
(
g −

1

�
�p

)
dt.

The reader may refer to [73] for a full presentation of the 
derivation. The SALT Euler does not conserve kinetic energy 
(chapter 10 of [137]) but conserves the (Stratonovich) heli-
city, H = ∫� w∗

⋅ � × w∗ [73, 142]. The advantage of this 
model is that it leads to a classical form of the vorticity 
equation. However, this at the price of an additional term in 
the momentum equation and a loss of energy conservation. 
Crisan et al. [35] have proofed the local well-posedness of 
the 3D incompressible SALT Euler model. In this review, 
we will not consider the compressible case, since it brings 
other complexities.

6.2.3 � Pseudo‑Stochastic Euler LU

The pseudo-stochastic Euler model under location uncer-
tainty writes:

Compared to the (stochastic) Euler model under location 
uncertainty (44), the pseudo-stochastic Euler model under 
location uncertainty (46) does not involve the stochastic 
forcing 

(
�dBt ⋅ �

)
w . This is because it is assumed that 

the drift w is a smooth function of time (more precisely a 
finite variation process) or, equivalently, that an uncorre-
lated pressure forcing compensates the stochastic forcing 
−
(
�dBt ⋅ �

)
w –, which ensues from the unique decompo-

sition in terms of martingales and finite variation terms. 
Accordingly, this pseudo-stochastic model is deterministic 
and hence easier to simulate for LES-like applications. The 
pseudo-stochastic model still retains the action of the unre-
solved small-scale components in terms of dissipation and 
modified advection, but does not include the backscaterring 
effect brought by the random component. As a consequence, 
for UQ purposes, the (stochastic) Euler model under loca-
tion uncertainty (44) may be more suitable [139]. Note that 
this pseudo-stochastic model has been successively used to 
define efficient reduced order models [141], in which the 
subgrid dissipation is directly defined from the neglected 
modes. This representation has the advantage to provide also 
new diagnosis enabling to quantify local energy dissipation 
as well as the effect of the turbulence inhomogeneity on the 
large-scale flow [130, 141]. This ability is a strong asset of 
the LU formalism for reduced order modeling.

(45)

DS
t

w∗

⏟⏟⏟

Due to the

transport

of �w∗

+

d∑
j=1

�(�◦dBt)jw
∗
j

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Additional term

=
(
g −

1

�
�p

)
dt.

(46)𝜕tw +
(
w⋆

⋅ �
)
w − � ⋅

(
1

2
a�wT

)T

= g −
1

𝜌
�p.
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6.3 � Parameterization of LU‑SALT Models

LU-SALT models are parameterized by the unresolved 
velocity spatial covariance (2021). It can be an anisotropic, 
heterogeneous, time-dependant or even be a function of the 
large-scale quantities (e.g. q). Choosing this covariance is 
equivalent to choosing the linear operator � or choosing its 
kernel �̆ . In this section, we review the different parameteri-
zations that have been considered so far. At the end of the 
section, we also propose a new one. It enables in particular 
time-dependant heterogeneous unresolved velocity statis-
tics without relying on off-line high-resolution simulation 
outputs.

6.3.1 � Kraichnan Model

Similarities between LU-SALT dynamics and the Kraichnan 
model [53, 85, 86, 104] were already highlighted by Mémin 
[110]. Kraichnan [85] focuses on the passive scalar transport 
by a homogeneous ( Cov(x, y, t, t�) = Cov(x − y, t, t�) ), iso-
tropic ( Cov(x, y, t, t�) = Cov(‖x − y‖, t, t�) ) and divergence-
free velocity field uncorrelated in time. With LU notations, 
it implies:

where ∗ denotes a convolution and �̆ is a particular (iso-
tropic) filter. The homogeneity condition (49) makes the 
parameterization easier in Fourier space:

where � � can be taken to mimic the self-similarities 
observed in real turbulence flow [53]:

with A is a constant, 1∕�m specifies the velocity correlation 
length and

is the projection—expressed in Fourier space—onto the 
space of solenoidal functions. The Fourier transform of the 
associated filter �̆ (appearing in (49)) is:

(47)w = 0,

(48)� ⋅ � = 0,

(49)�dBt = �̆ ∗ dBt,

(50)
�

{(
�̂dBt

)
(k1, t)

(
�̂dBt�

)T

(k2, t
�)
}

= � �(k1)�(k1 − k2)�(t − t�)dt,

(51)� �(k) = A2
P̂(k)

�
1 +

‖k‖2
�2
m

�−2�

,

(52)P̂(k) = �d −
kkT

‖k‖2 ,

Finally, the Fourier transform of the small-scale velocity 
writes:

where d̂Bt is the spatial Fourier transform of dBt , with 
dBt

�√
�t , a vector of d independent discrete white noise 

processes of unit variance in space and time. To sample 
the small-scale velocity, we first sample dBt

�√
�t , to get 

d̂Bt

�√
�t , and finally ��Ḃ(k) with the above equation.

Note that the same unresolved simulation is possible 
without relying on Fourier transform. Indeed, one can use 
the fact that M̂(k)

△

=
�
1 +

‖k‖2
�2
m

�−�
 is the Fourier transform of 

a Matérn covariance M of degree � = � − 1 and of range 
� =

√
2(� − 1)∕�m . Therefore, the unresolved velocity is:

with

6.3.2 � The Homogeneous Stationary Model

Assuming zero large-scale velocity is obviously not possi-
ble in CFD. However, combined with a resolved large-scale 
velocity, a homogeneous and stationary small-scale veloc-
ity can be a relatively good approximation for some flows. 
Note that even a homogeneous small-scale vecolity leads to 
a heterogeneous non-Gaussian random forcing, due to the 
its multiplicative structure.

Resseguier et al. [140] show numerical simulations of a 
LU version of a 2-dimensional geophysical model referred 
to as the Surface Quasi-Geostrophic (SQG) model [9, 71, 
90]. For this purpose, a modification of (53) is consid-
ered. Instead of involving the operator P = �d − �−1

��
T , 

Resseguier et al. [140] work on the streamfunction ��dBt . 
As such no additional divergence-free constraint is needed. 
The streamfunction kernel, 𝜓̆𝜎 is defined such as:

with �⊥ = (−𝜕y, 𝜕x)
T . Accordingly, a single cylindrical Wie-

ner process, Bt , is sufficient to sample the Gaussian process. 
This is specific to two-dimensional domains. In 3D, a vec-
tor of 3 independent �d-cylindrical Wiener processes, and a 
curl must be considered to simulate an isotropic small-scale 
velocity. Thus, the small-scale velocity can be conveniently 
specified from its omnidirectional spectrum:

(53)�̆�(k) = A �P(k)

�
1 +

‖k‖2
𝜅2
m

�−𝛼

.

(54)��Ḃ(k) =
A√
𝛥t

�P(k)

�
1 +

‖k‖2
𝜅2
m

�−𝛼�dBt√
𝛥t

(k),

(55)�dBt = AP
{
M ∗ dBt

}
,

(56)P = �d − �−1
��

T .

(57)�(x)dBt = �
⊥𝜓𝜎(x)dBt =

(
�
⊥𝜓̆𝜎 ⋆ dBt

)
(x).
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where �(�) is the surface of the spatial domain � , �k is 
the angle of the wave-vector k and �t the simulation time-
step. Consistent with SQG turbulence, the omni-directional 
spectrum slope, denoted s, is fixed to −5∕3 . For 2D Euler 
equations, the slope would be set to −3 . The unresolved 
velocity should be energetic only where the dynamics can-
not be properly resolved. Consequently, the authors apply 
to the spectrum a smooth band-pass filter, fBP , which has 
non-zero values between two wavenumbers �m and �M . The 
parameter �m is inversely related to the spatial correlation 
length of the unresolved component. �M is set to the theo-
retical resolution, �∕�x , and �m to the estimated effective 
resolution ( �m = �M∕2 in Resseguier et al. [140]). The small 
scales’ energy is specified by the diffusion coefficient a and 
the simulation time step:

The diagonal structure of the variance tensor is due both to 
incompressiblity and isotropy. The scalar variance tensor, 
a0 , is similar to an eddy viscosity coefficient. So, a typical 
value of eddy viscosity used in practice is a good proxy to 
setup this parameter. Otherwise, this parameter can be tuned. 
The time step depends itself, through the CFL conditions, 
on both the spatial resolution and the maximum magnitude 
of the resolved velocity. Finally, similarly to the Kraichnan 
model, the Fourier transform of the small-scale velocity 
writes:

w h e r e  A  i s  a  c o n s t a n t  t o  e n s u r e 
�‖‖�Ḃ‖‖2 = tr(a)∕(𝛥t) = 2a0∕(𝛥t) (see (59) above), d̂Bt is the 
spatial Fourier transform of dBt , with dBt

�√
�t , a discrete 

scalar white noise process of unit variance in space and 
time. To sample the small-scale velocity, we first sample 
dBt

�√
�t , to get d̂Bt

�√
�t , and finally ��Ḃ(k) with the above 

equation.
A MATLAB code simulating the model under location 

uncertainty with this parameterization for a SQG flow is avail-
able online (http://vress​egu.githu​b.io/sqgmu​). Resseguier et al. 
[140] have numerically demonstrated the good UQ skills of 
this method for SQG flows.

(58)

k ↦

1

𝜇(𝛺)
�∮[0,2𝜋]

d𝜃k‖k‖
����
��Ḃ(k)

����
2

=
2𝜋
𝛥t

‖k‖3����̆𝜓𝜎(‖k‖)���
2

,

(59)�
(
�Ḃ

)(
�Ḃ

)T

=
1

𝛥t
a =

1

𝛥t

(
a0 0

0 a0

)
.

(60)

��Ḃ(k)
△

=
A√
𝛥t

ik⊥fBP(‖k‖)‖k‖−𝛼
�dBt√
𝛥t

(k) with s = 3 − 2𝛼 = −
5

3
,

6.3.3 � The Homogeneous Non‑stationary Model

A main drawback of the previous choice of � is the needed 
tuning of the parameters. Resseguier et al. [142] propose a 
more general homogeneous parameterization where no tun-
ing is needed. A new � will be defined at each time step from 
the resolved velocity kinetic energy spectrum.

In the previous parameterization, the absolute diffusivity 
(i.e. KE times correlation time [43, 78, 81, 127, 166]) of the 
unresolved velocity is twice the variance tensor trace T(a) 
whereas the unresolved kinetic energy is T(a)∕dt . Clearly, 
this kinetic energy has no physical meaning. Indeed, it 
depends on the simulation time step and one should have 
the possibility to choose the time step as close as possible 
to zero. Thus, the unresolved velocity amplitude is speci-
fied through an absolute diffusivity rather than through a 
KE. In the mathematics literature of homogenization, Kubo-
type formulas may be seen as what physicists call absolute 
diffusivities. More generally, since the variance of a time-
continuous white noise is infinite, it is more relevant to deal 
with absolute diffusivity rather than kinetic energy in order 
to describe the statistics of the time-uncorrelated velocity. 
Thus, keeping a spectral approach, we define—for any spa-
tio-temporal field—an Absolute Diffusivity Spectral Density 
(ADSD) denoted A(�) at the wave-number � . We will rely 
on this ADSD rather than on the KE spectrum, E(�) . Since 
the absolute diffusivity is the variance multiplied by the cor-
relation time, it is naturally to defined the ADSD as follows:

is the eddy turnover time at the scale 1∕� and v� is at charac-
teristic velocity a this scale. Accordingly, we have:

If in addition we assume a KE self-similar distribution,

we obtain:

where r = (s + 3)∕2.
We aim at defining the unresolved velocity ADSD from 

the large-scale velocity. For this purpose, we will assume the 
self similar model (64) is valid at all spatial scales. At each 
time step, we compute the ADSD of the large-scale velocity, 
Aw , from formula (62). Then, we fit the coefficients C and r 
of Eq. (64). Let us denote with Cw and rw these coefficients. 
Note that they are time-dependent because they depend on w 
which is. More precisely, we estimate the coefficients Cw and 
rw in a wavenumber interval which approximately represents 

(61)A(�)
△

=E(�)�(�) where �(k) =
1∕�

v�
=

1∕�√
�E(�)

,

(62)A(�) = �−3∕2E1∕2(�).

(63)E(�) = C2�−s,

(64)A(�) = C�−r,

http://vressegu.github.io/sqgmu
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a inertial range of fully-resolved scales (i.e. before the spec-
trum roll-off).

From there, we can define the operator � in such a way 
that the total velocity—resolved plus unresolved—meets 
(64) at small spatial scales with the same coefficients 
(Cw, rw) . Since the two velocity components are not corre-
lated, the total ADSD is the sum of the ADSD of each veloc-
ity component. Therefore, � is chosen such as the unresolved 
ADSD compensates the resolved ADSD roll off – introduced 
by the deterministic subgrid parameterization—at small 
scales. Specifically, the unresolved ADSD is set to:

As previously, f 2
BP

 is a band-pass filter between �m and �M . 
In practice, we set �M to the theoretical resolution:

and �m to the effective resolution which is estimated as 
follows:

where p is the order of the Laplacian used as deterministic 
subgrid tensor (i.e. Dtb = −�(−�)pb dt ). The justification 
of the above formula is left in the “Appendix 3”. Compared 
to the work of Resseguier et al. [140], the value of �m is less 
critical. Indeed, Eq. (65) implies a weaker unresolved ADSD 
at larger scales where the resolved ADSD, Aw is stronger. 
This softens the threshold effect introduced by the band-
pass filter fBP.

In practice, we set an upper-bound for the estimation of 
rw . Without this upper bound, a concentration of energy at 
relatively large wave-numbers—scales smaller than �m—in 
the resolved fields can become unstable. Indeed, this local-
ized energy concentration would decrease the rw estima-
tion, and hence increase the unresolved ADSD A�Ḃ through 
(65) at large wave-numbers—larger than �m . This implies a 
larger noise intake, which can induce a larger concentration 
of energy at relatively large wave-numbers in the resolved 
fields, resulting in a positive feedback loop. To prevent these 
unphysical instabilities, the slope rw is bounded.

In order to link the unresolved ADSD to the kernel �̆ 
which defines the unresolved velocity, we note that

From formulas (65)-(68), we can finally express the unre-
solved velocity as follow:

(65)A�Ḃ(𝜅) = max(0,Cw𝜅
−rw − Aw(𝜅)) f

2
BP
(𝜅).

(66)�M =
�
�x

,

(67)�m =

(
ln(0.95)

ln(0.1)

)1∕p

�M ,

(68)
A�Ḃ(𝜅) = E�Ḃ(𝜅)dt =

1

𝜇(𝛺) ∮[0,2𝜋]
d𝜃k𝜅

‖‖‖�̆�(t, 𝜅)
‖‖‖
2

= 2𝜋𝜅3|||�̆𝜓𝜎(t, 𝜅)
|||
2

.

Again the simulated unresolved velocity ADSD is physi-
cally relevant while the KE spectrum is not. Indeed, the sim-
ulated unresolved velocity ADSD is expected to match the 
true (time-correlated) unresolved velocity ADSD, whereas 
the KE spectra of the simulated and true unresolved veloci-
ties differ. Indeed, the true unresolved velocity correlation 
time spectral distribution �(�) is not restricted to the time 
step dt.

Resseguier et al. [142] have successfully applied this 
parameterization for UQ purpose in a SQG flow.

6.3.4 � Heterogeneous Modulation of Homogeneous Models

The SALT-LU stochastic parameterization randomly folds 
tracer isolines. This process is often desirable. For instance, 
it can trigger physically-relevant instabilities, such as the 
filament instabilities highlighted by Resseguier et al. [140]. 
After these instabilities have been randomly triggered, 
eddies are formed by non-linear processes. However, a 
homogeneous small-scale velocity may also perturb the 
tracer isolines which should remain still (i.e. which remain 
still in high-resolution deterministic simulations), e.g. sharp, 
straight, coherent fronts. A typical application of this prob-
lem in more realistic flow simulations is the simulation of 
jets like the Gulf Stream and regions of the Antarctic Cir-
cumpolar Current. These real-world jets are associated with 
diffusivity suppression [45], and this effect is not present in 
our formulation so far. If we seek to preferentially perturb 
some tracer gradients, a heterogeneous small-scale veloc-
ity is required. Note that the heterogeneity discussed here 
needs to be non-stationary and thus cannot be represented 
by the stationary EOF presented later in this paper. Besides, 
in a small ensemble of realizations, relevant heterogeneity of 
the small scales may make the spreading more accurate for 
UQ and enable comparable ensemble forecast accuracy with 
fewer members. We here propose a possible heterogeneous 
version of the previous method.

In order to obtain a heterogeneous model of the unre-
solved velocity, we need a heterogeneous version of the 
ADSD (64). Since the wave-number � cannot depends of 
the position x , the constant Cw and/or the spectrum slope r 
should do. A spatially varying spectrum slope is probably 

(69)��Ḃ(t, k) =
1√
𝛥t

ik⊥�̆𝜓𝜎(t, ‖k‖)
�dBt√
𝛥t

(k),

(70)

=
1√
𝛥t

ik⊥

�
max(0,Cw‖k‖−rw − Aw(‖k‖))

2𝜋‖k‖3

fBP(‖k‖)
�dBt√
𝛥t

(k).
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difficult to estimate. Hence, we restrict ourselves to a spa-
tially-varying constant Cw and a spatially-homogeneous 
spectrum slope. The constant may also varies with the time 
and the wave number. According to the Kolmogorov theory 
(e.g. [52]) and (63):

where �F is the energy flux through the spatial scales and 
p = 1∕3 for a SQG flow. More specifically, the energy flux 
describes the energy moving from scales larges than 1∕� 
toward smaller scales and can be computed as follows:

where q is the transported (up to possible source terms) 
quantity, g<𝜅 is the low-pass filtered version of g (setting to 
zero the Fourier modes of g which have frequencies larger 
than � ) and ∙ stands for the spatial average [52]. For a SQG 
flow, q corresponds to the buoyancy normalized by the strat-
ification: q = b∕N  . The energy flux is essentially a third-
order moment. It is very important because it describes the 
cascade of the flow by non-linear energy transfers [52].

If the energy flux through scale is understood locally in 
space (as indeed Smagorinsky [159] also assumes), the for-
mula (71) provides a natural parameterization of the unre-
solved velocity heterogeneities. We simply modulates the 
unresolved ADSD (65) by the heterogeneous ratio �p

F
∕�p

F

—averaged over the resolved inertial range wave-numbers:

where P = �d − �−1
��

T is the projector onto the space of 
free-divergence functions. This parameterization is physi-
cally meaningful since, locally in space, a stronger direct 
cascade at large scales (larger �F and thus larger Cw ) sug-
gests that the unresolved velocity (large) should maintains 
this cascade by folding smaller-scale tracer structures. Fur-
thermore, considering that the energy flux is a third-order 
structure makes this parameterization relevant to differenti-
ate between strait fronts and curved structures (e.g. eddies). 
Indeed, at least three points are needed to define a curvature 
and differentiate between these structures.

(71)Cw(x, t, �) = cst.�p
F
(x, �),

(72)𝜖F(x, t, 𝜅)
△

=q<𝜅 ((w ⋅ �)q)<𝜅 ,

(73)

���Ḃ(t, k) =
1√
𝛥t

ik⊥

�
max(0,Cw‖k‖−rw − Aw(‖k‖))

2𝜋‖k‖3

fBP(‖k‖)
�dBt√
𝛥t

(k),

(74)

�Ḃ(t, x) = P

{ √√√√𝜖p
F
(t, x)

𝜖p
F
(t)

���������

Heterogeneous

modulation

��Ḃ(t, x)
���

Homogeneous

velocity

}
,

In order to keep a divergence-free velocity and the ensu-
ing properties (e.g. energy conservation), the modulated 
velocity is projected onto the space of free-divergence 
functions, using the operator P . Because of that we do not 
consider the advection correction w∗ − w = −

1

2
(� ⋅ a)T of 

the LU formalism. Indeed, here the variance tensor has the 
simple form a =

1

d
tr(a)�d . As such, the advection correction 

is a gradient field and is hence removed by the projection 
onto the space of free-divergence functions.

Resseguier et al. [142] have numerically shown that this 
parameterization indeed keeps the sharp straight fronts while 
perturbing the eddies and the meanders in SQG flows.

6.3.5 � The Heterogeneous Spatially‑Uncorrelated Model

Yang and Mémin [173] have considered a spatially hetero-
geneous subgrid velocity. The variance tensor a is estimated 
on-line by data assimilation. To simplify, they neglect the 
spatial correlation of that velocity.

6.3.6 � Off‑Line Learning of the EOF from Velocity

It is always possible to write the unresolved velocity as fol-
lows (see e.g. [110]):

with Wk are independent one-dimensional Brownian motions 
and nKL possibly infinite. The (�k)k are so-called (weighted) 
Empirical Orthogonal Functions (EOFs). If we denotes 
by �k the L2 norm of the EOFs, their normalized versions (
�̃k = �k∕𝜆k

)
k
 are the eigenvectors of the auto-adjoint opera-

tor defined by the kernel �(x, t)�T (y, t) . The (�k)k are the 
corresponding eigenvalues. That kernel corresponds—up 
to the factor 1

dt
—to the one-time two-point covariance of 

the unresolved velocity. In the case of stationary EOFs, the 
type of decomposition (75) is supported by the mathematical 
theory of ��T-Wiener processes [36, 135].

First, we will consider the off-line learning of the EOFs 
(�k)k from a velocity field set. Specifically, we will assume 
that we have a history of “small-scale” velocity fields (
v�(xij,m)

)
1⩽m⩽nO

 at nO different times tm (or nO different 
“realizations”) sampled on a spatial grid of M points (
xij
)
ij
= ((i�x, j�y))ij . Typically, the velocity snapshots are 

high-resolution simulation outputs or high-pass-filtered ver-
sions of it. We also need to assume that the EOFs are station-
ary in time. For the sake of clarity, we restrict the methods 
presentation to d = 2 . Notwithstanding, the generalizations 
to three-dimensional flow are straightforward.

Candidate for the increment realizations
In order to estimate the EOFs, (�i)i , we assume that we 

can observe increments

(75)�(x, t)Ḃ =

nKL∑
k=1

�k(x, t)Ẇk,



	 V. Resseguier et al.

1 3

at several times tm . Here, �T  is the time step of a low-reso-
lution simulation. We will interpret the following snapshots:

as a realizations of the flow increments (76). Since Brownian 
time increments (76) are independent, by the above interpre-
tation, we implicitly assume that v�(xij,m) are independent 
for different values of m. In this case, it is equivalent to 
consider them as as a set of independent “realizations” or as 
a set of snapshots at several times tm.

Preprocessing

The increments are supposed to be centered and divergence 
free ( � ⋅ �i = 0 ). Therefore, after computing the residual 
flow increments 

(
�̃X

m

ij

)
m
 , they are centered:

with the estimator

and projected onto the space of divergence-free functions:

Note that the projection can also be applied directly on the 
final EOFs �k—at the end of the estimation process— rather 
than on each increments �X′m

ij
 . Besides, if � ⋅ v� = 0 then the 

centred flow increments are already divergence-free and the 
step (80) can be skipped.

Covariance and EOF

Then, we can define the EOFs from an estimate of the spatial 
covariance of the residual flow increments (averaging over 
the time index m) :

Besides, we have:

(76)∫
tm+�T

tm

�dBt� =

nKL∑
k=1

�k(xij)(Wk(tm + �T) −Wk(tm)).

(77)�̃X
m

ij

△

= v�(xij,m)�T ,

(78)𝛥X�m

ij

△

= �𝛥X
m

ij
− �̂{�𝛥X

m

ij
},

(79)�̂{�𝛥X
m

ij
}
△

=
1

nO

nO∑
m=1

�𝛥X
m

ij
,

(80)�Xm
ij

△

=P{�X�m

ij
} with P = �d − �−1

��
T .

(81)��(xij, xpq) ≈
1

(nO − 1)�T

nO∑
m=1

�Xm
ij
(�Xm

pq
)T .

(82)��(xij, xpq) =

nKL∑
k=1

�k(xij) �k
T(xpq).

In order to properly define the EOFs, we must add the fol-
lowing orthogonal constraint:

According to Eqs. (82) and (83), the EOFs can be obtained 
from a diagonalization of the covariance 

(
��(xij, xpq)

)
(ij),(pq)

.

Dual problem for the EOF estimation
Since the number of grid points M is often larger than 

the number of increments, nO , the covariance (81) can be 
a very large matrix ( Md ×Md ). It is easier to consider the 
dual problem to estimate the EOFs. As such, the temporal 
covariance is first computed:

After diagonalizing this nO × nO matrix, the EOFs are 
obtained by projecting the eigenvectors onto the normalized 
increments 1√

�T
�Xk

ij
.

Finally, after estimating the (�k)k off-line, the ensemble 
forecast can be generated on-line with the formula (75). This 
techniques has recently been applied for the stochastic simu-
lation of turbulent channel flow. These stochastic simulation 
show how the inhomogeneity of the small-scales velocity 
components allows structuring the large-scale component 
in terms of streaks Chandramouli et al. [22].

6.3.7 � Off‑Line Learning of EOF from Flows

Now, we detail a procedure proposed by Cotter et al. [31–33] 
for the estimation of the EOFs, (�k)k , involved in the unre-
solved velocity definition (75). Here again, the EOFs are 
assumed stationary in time. The main difference with the 
off-line learning of EOF from velocity 6.3.6 is the candidates 
which are used for the increments �̃X

m

ij
.

The data-driven method of Cotter et al. [31–33] relies on 
Lagrangian paths defined at two “resolutions”. The first par-
agraph of this section defines these two types of Lagrangian 
paths. Then, we explain how to obtain the candidates for the 
flow increment realizations from these Lagrangian paths.

Preliminary definitions

We introduce two types of velocity field:

•	 a high-resolution velocity v on a fine spatial mesh-grid,
•	 a low-resolution velocity v on a coarse spatial mesh-grid. 

This velocity field is a spatially-low-pass-filtered version 
of v.

(83)
∑
pg

�i(xpq) ⋅ �j(xpq) = 0 if i ≠ j.

(84)𝛾̃𝜎(tp, tq)
△

=
1

M

∑
ij

1

𝛥T
𝛥Xp

ij
⋅ 𝛥Xq

ij
.
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Then, two types of Lagrangian path are defined:

•	 a “high-resolution flow”, Xij(t0, t) , defined by the high-
resolution velocity v : 

•	 a “low-resolution flow”, Xij(t0, t) , defined by the low-
resolution velocity v : 

Candidate for the increment realizations

In order to estimate the EOFs, we will interpret the following 
residual flow increments as realizations of the unresolved 
stochastic flow increments (76):

Then, the following steps are the same than in 6.3.6 (pre-
processing and covariance diagonalization).

This method [31, 33] may seem more natural than the 
one of 6.3.6, since the increments (87) are really flow incre-
ments. Nevertheless, the time step �t being small, �̃X

m

ij
 is 

close to (v − v)
(
tm, xij

)
�T  . Therefore, the main difference 

between the two methods is probably in the definition of 
the “residual velocities”: v′ on one hand and (v − v) on the 
other hand.

The method 6.3.7 has been successfully tested on a 2D 
Euler flow [33], a quasi-geostrophic flow [31] and a SQG 
flow [142]. Resseguier et al. [142] also compare the data-
driven method 6.3.7 and the homogeneous non-data driven 
method 6.3.3 for forced homogeneous SQG turbulence. 
Similarly good UQ results are obtained.

6.3.8 � Off‑Line Learning of the Stochastic Advection 
Operator

The accuracy of the unresolved velocity Karhunen-Loeve 
decomposition (75) is influenced by the number of kept 
modes EOFs, nKL . In fluid mechanics, the state-space dimen-
sion is often huge. Therefore, that kind of spectral decompo-
sition of the covariance often involves a number of modes 
much smaller than the state-space dimension. Hence, the 
decomposition (75) strongly reduces the sampling compu-
tational cost since there is no need to manipulate the full 
spatial covariance.

Nevertheless, for specific applications like dimension-
ally-reduced models, the state space can be reduced to a 

(85)
dXij

dt
(t) = v

(
t,Xij(t0, t)

)
and Xij(t0, t0) = xij.

(86)
dXij

dt
(t0, t) = v

(
t,Xij(t0, t)

)
and Xij(t0, t0) = xij.

(87)�̃X
m

ij

△

= Xij(tm, tm + �T) − Xij(tm, tm + �T).

small well-chosen vector space (e.g. [74]). By definition, the 
resolved velocity component lies on this subspace, whereas 
the unresolved component does not [110, 138, 141]. If the 
state-space dimension—says nr—is small enough, it can be 
more interesting to directly work with the statistics of the 
random operator:

expressed in the reduced basis, rather than dealing with 
the unresolved velocity statistics. Indeed, the reduced rep-
resentation of the stochastic operator is a (conditionally-) 
Gaussian matrix of size nr × nr . It is centered and time-
uncorrelated. Therefore, the probability law of this matrix 
is exactly and entirely determined by its covariance, which 
have n2

r
× n2

r
 coefficients.

In comparison, the approximate unresolved velocity 
Karhunen-Loeve decomposition would lead to stochastic 
operator

characterized by n2
r
× nKL coefficients. For nKL < n2

r
 , this 

last representation is necessary an approximation (since the 
covariance of the exact representation of (89) in the reduced 
subspace is of full rank, i.e. of rank n2

r
 ). For small nr , one can 

rely on the random operator reduced representation instead. 
Rigorous and low-cost estimators exist for this representa-
tion covariance matrix coefficients and provide good UQ 
skills ([137], chapter 8).

Nevertheless, for large state-space dimension nr , this 
n2
r
× n2

r
 covariance matrix of the random operator is too large 

to handle. Hence, additional assumptions on the unresolved 
small-scale velocity (e.g. homogeneity, parametric model, 
transport) or a Karhunen-Loeve decomposition become 
necessary.

6.3.9 � Transport of the Unresolved Velocity

Methods 6.3.6 and 6.3.7 learn the unresolved small-scale 
structure from high-resolution simulations. However, such 
simulations are not always available. Moreover, methods 
6.3.6 and 6.3.7 assume heterogeneity without time depend-
ence. While some turbulence heterogeneities could be fixed 
in time (e.g. heterogeneity due to boundaries conditions), we 
can expect that a large part of it moves with the flow.

Accordingly, Gay-Balmaz and Holm [54] assume a 
“transport equation”—in the sense of differential geometry 
– for the EOFs:

(88)f ↦ �dBt ⋅ ∇f ,

(89)f ↦

nKL∑
k=1

(�k ⋅ ∇f )Ẇk,

(90)DS
t
�k = (�k ⋅ �)(w

∗dt + �◦dBt).
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As such, the unresolved velocity is both heterogeneous and 
non-stationary in time, without requiring any learning. How-
ever, as far as we know, this method has not been tested in 
numerical simulations yet.

6.3.10 � On‑Line Learning of EOF from Velocity

We propose here a new approach—based on the EOF 
decomposition (75)—but where the EOFs are time-
dependent. They are estimated on-line from a coarse simu-
lation. For this purpose, we propose to generate pseudo-
observations of the small scales directly from the resolved 
velocity. Then, we will compute an EOF representation 
as in 6.3.6. Finally, we will adapt the noise variance to 
smaller scales using a turbulence power-law scaling (origi-
nally proposed by [69]).

Pseudo-observations

The approach proposed in this section defines nO pseudo-
observations v′ at each simulation grid point before comput-
ing the singular value decomposition (SVD).

For a given time t and a given resolved low-resolution 
velocity component, w , we build pseudo-observations by 
sliding a nw × nw ( nw odd) window over the spatial grid. 
We denote by L = nwl the spatial scale of the window, 
where l is the smallest scale of the simulation. At every 
grid point xij , we list the n2

w
 velocity values contained 

in the window centered at that point—with appropriate 
boundary conditions (replication, periodicity, etc. ) when 
looking at a point on the border:

Then, for each m ∈ {1,… , nO} , for each point xij indepen-
dently, we set the value of the pseudo-observation v�(xij, t,m) 
by randomly choosing a value in the set I(xij, t).

After this, we proceed as in 6.3.6 to obtain the EOFs, 
but averaging over the pseudo-realization index m instead 
of averaging over the time steps tm.

Rescaling
From the SVD, we obtain a set of EOFs �(L)

k
 and hence 

a model for the unresolved velocity �(L)(x, t)Ḃ:

The pseudo-realizations v� = v�
L
 have been generated at a 

spatial scale L = nl . These fluctuations correspond to a vir-
tual observation scale L ( n × n window) and must be scaled 
down to the “simulation scale” l. Therefore the unresolved 

(91)I(xij, t)
△

=

{
w(xpq, t)

|||||p − i| ⩽ n−1

2
, |q − j| ⩽ n−1

2

}
.

(92)�(L)Ḃ =

nKL∑
k=1

�
(L)

k
Ẇk.

velocity variance tensor, a , is rescaled by a coefficient pro-
posed by Harouna and Mémin [69], and which in 2D reads:

where aL and al are the variance tensors at the scales L and 
l respectively. This scaling relies on the Kolmogorov-Rich-
ardson cascade assumption with the velocity fluctuations at 
scale � as u

�
∝ �1∕3�1∕3 . The unresolved velocity, �Ḃ , can be 

finally simulated—at the “simulation scale” l—as:

Let us note that in 3D the scaling must be adapted as the 
power exponent is 4/3 Harouna and Mémin [69].

The on-line SVD method 6.3.10 will be numerically 
tested in Sect. 8. There, the LU parameterizations 6.3.2, 6.3.3 
and 6.3.10 will be compared to the new scheme 5.3.2 and 
to ensembles generated by initial condition perturbations.

7 � Metrics for UQ

In this section, we detail some important metrics to quantify 
ensemble forecasts prediction skills.

This section is a short summary about existing verifica-
tion ensemble tools. More detailed review could be found 
in [58, 68, 154, 163].

7.1 � Talagrand Diagram

A Talagrand diagram (or rank histogram) is a technique 
used to check the reliability of an ensemble forecast or a 
set of quantile. The idea is considers the availability of N 
observation qo

1
,… , qo

N
 in a set of rank r. The sets of rank 

are built from rank statistic which is a sorted ensemble 
{(q

(i1)

1
,… , q

(ine )

1
),… , (q

(i1)

N
,… , q

(ine )

N
)} of ne members [3, 68, 

161]:

where ℙ̂ is the estimated probability of ranking an observa-
tion between two sorted ensemble members. In the context 
of (95), N represents the spatial points or times steps of the 
observation.

A calibrated ensemble should result in a flat histogram. 
However, a flat histogram does not guarantee a calibrated 
ensemble [67]. A flat histogram mostly indicates that the 
ensemble and observation are sampled from a common 
distribution. A U-shaped rank histogram corresponds to an 
underdispersion or to a conditional bias [67] of the ensemble 

(93)al =
(
l

L

)2∕3

aL,

(94)�Ḃ = n−1∕3 �(L)Ḃ.

(95)

∀(j, k) ∈ {1,… , ne} × {1,… ,N}, rj =
1

N

N∑
k=1

�ℙ(q
(ij−1)

k
≤ qo

k
< q

(ij)

k
),
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members. A dome-shaped shows an overdispersion of the 
ensemble. A nonsymmetric histogram is the footprint of 
bias.

7.2 � Mean Absolute and Mean Squared Error

The mean absolute error (MAE) and mean squared error 
(MSE) are the state-of-the-art verification and selection tools 
specially used in regression problems as decision function. 
In an ensemble verification problem, the MAE is defined by 
the following formulation:

and the MSE by this one:

The goal behind these two equations is to calculate the total 
error between a sample of observation and ensemble of size 
N. So, the empirical mean of all error between an observa-
tion qo

k
 and each member q(j)

k
 of the ensemble of size ne is 

calculated. Both metrics are proper scores. A proper score 
is negatively oriented, such that a lower score indicated a 
better ensemble forecast. A proper score converging to zero 
means that the observation cannot be distinguished from the 
ensemble members. There are several proper scoring rules.

7.3 � Continuous Ranked Proper Score

Another proper score used for ensemble model evaluation 
is the continuous ranked proper score (CRPS). This kind of 
score is characterized by the so-called predictive distribu-
tion F—the distribution represented by the ensemble fore-
cast {q(1),… , q(ne)} realizations and the observation qo . The 
CRPS is defined by the following equation [72, 108]:

where H is the heaviside function (equals to one if qo ≤ B 
and zero otherwise), F is the cumulative distribution func-
tion (CDF) of the random process q (represented by the 
ensemble) at one spatial point x and time t. The CRPS 
is the distance between the heaviside function and the dis-
tribution of the random variable q. This heaviside function 
represents the inequality between an ensemble member and 
the observation. If F has a finite first-order moment, there is 
another representation of the CRPS [58]:

(96)

∀(j, k) ∈ {1,… , ne} × {1,… ,N},

MAE =
1

Nne

N∑
k=1

ne∑
j=1

|qo
k
− q

(j)

k
|,

(97)

∀(j, k) ∈ {1,… , ne} × {1,… ,N},

MSE =
1

Nne

N∑
k=1

ne∑
j=1

(qo
k
− q

(j)

k
)2.

(98)CRPS(F, qo) = ∫
ℝ

(F(B) − H(B − qo))2dB,

where q and q′ are independent realizations of F. If a priori 
assumption are made on the behaviour of the random vari-
able q. It is possible to deduce an analytic expression of the 
CRPS thanks to the Eqs. (98) and (99).

In the case where F is issued from a normal distribution 
N(�, �2) , the CRPS formula is [59]:

where � =
(qo−�)

�
 , � is probability density function (PDF) 

of the standard normal distribution and � is the CDF of the 
standard normal distribution.

Also following [63], for an ensemble forecast 
{q(1),… , q(ne)} , a natural fair estimator of the CRPS is given 
by:

The expression (101) allows to compute the CRPS without 
making a priori assumptions on our random variable. How-
ever, this expression has a O(n2

e
) computational complexity.

An algebraically equivalent representation of the CRPS 
based on the generalized quantile function is proposed by 
[89]

where {q(i1),… , q(ine )} is the sorted ensemble forecast. 
The computational complexity of the expression (102) is 
O(nelog(ne)) . The interested reader can refer to [77] for 
mathematical details on the discrete form of the CRPS.

7.4 � Energy Score

In a CFD problem, observations and ensembles evolve in 
space and time. The CRPS is a pointwise score, hence can-
not summarize the whole uncertainty of the ensemble in 
one value in a multivariate case. Therefore, to perform the 
evaluation of our ensemble in a multivariate case, the CRPS 
will not be enough. Of course, the means of the CRPS can 
be use. However, we would miss some information. Instead, 
the energy score can be considered.

There, our observation qo and our random vari-
able q is multivariate. The corresponding ensemble 
{(q

(1)

1
,… , q

(1)

N
),… , (q

(ne)

1
,… , q

(ne)

N
)} contains ne realizations. 

Each of them represents the field of interest in N time steps or 

(99)CRPS(F, qo) = �F|q − qo| − 1

2
�F|q − q�|,

(100)CRPS(F, qo) = �

�
�(2�(�) − 1) + 2�(�) −

1√
�

�
,

(101)

ĈRPS(F, qo) =
1

ne

ne∑
i=1

|q(i) − qo| − 1

2n2
e

ne∑
i=1

ne∑
j=1

|q(i) − q(j)|.

(102)

�CRPS(F̂, qo) =
2

n2
e

ne∑
j=1

(
(q(ij) − qo)(neH(q(ij) − qo) − j +

1

2
)
)
,
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spatial points. F is now the multivariate CDF associated to q. 
We need a generalized form of the CRPS to work in this case. 
Following [58, 154], a possible generalization of the CRPS is 
the energy score (ES):

where ‖.‖ is the euclidean norm. So, an estimator of the ES 
would be:

7.5 � Variogram Score ‑ p

The energy score can provide an evaluation of the uncertainty 
of a multivariate ensemble. Nevertheless, this score is often 
not sufficiently sensitive to misspecification of the correlations 
structures of the multivariate observation and the multivariate 
ensemble. Those correlations cannot be study by univariate 
proper score unlike the means and variance. Thus, it does not 
evaluate the capacity of the ensemble model to reproduce the 
correlations structures in time and/or space of the observation.

One tool used to study these correlations is the variogram 
of order p (also called structure function). This tool consists 
in studying the pairwise differences of the component of the 
multivariate ensemble forecast and observation by consider-
ing the statistics of our multivariate observation. Following 
[154], the p-variogram score (VS-p) is an alternative solution 
which overcomes this drawback. We express it using the same 
multivariate random variable q and observation qo:

where the wij are non negative weights that allows one to 
emphasize or down-weight pairs of component combinations 
based on subjective expert decisions. p is the order of the 
variogram score. N represents the number of spatial points 
or time steps. F is the multivariate cumulative distribution 
function of q. According to [154], a typical choice of weight 
to discriminate time or space dependencies is the inverse 
distance weight: wij ∶=

1√�i−j� and p ∶= 0.5 . The VS-p score 
measures the dissimilarity between approximations of the 
variograms of order p of the observations and forecast over 
all pairs of the components of our variable of interest.

(103)ES(F, qo) = �F‖q − qo‖ − 1

2
�F‖q − q�‖,

(104)

�ES(F̂, qo) =
1

ne

ne�
i=1

‖q(i) − qo‖ − 1

2n2
e

ne�
i=1

ne�
j=1

‖q(i) − q(j)‖

(105)VSp(F, qo) =

N∑
i=1

N∑
j=1

1

wij

(|qo
i
− qo

j
|p − �F|qi − qj|p)2,

8 � Numerical Results : Ensemble Forecasts 
Verification for SQG Dynamics

In this section, we will present new numerical UQ results. 
As a test case, a simple geophysical fluid dynamics—the 
stochastic surface quasi-geostrophic (SQG) model—will be 
considered. After presenting it, several stochastic subgrid 
parameterizations will be compared for short-term and for 
long-term ensemble forecasts. We will focus on SALT-LU 
schemes, the new random forcing derived from numerical 
dissipation of Sect. 5.3.2 and random perturbation of initial 
condition.

8.1 � Test Flows

8.1.1 � Deterministic and Stochastic Surface 
Quasi‑Geostrophic (SQG) Dynamics

From here, the field q = b will denote the buoyancy. It is 
proportional to the density anomaly �′

where � is the density and N the stratification. In the ocean, 
the density anomaly is small compared to the total density 
(Boussinesq approximation) and the flow is approximately 
isochoric. The conservation of salinity and temperature, 
with a linearized equation of state, provides the transport 
of buoyancy [166]. Then, considering rapid rotation, strong 
stratification and uniform potential vorticity leads to the so-
called SQG model [9, 71, 90].

A random version of this model (denoted SQGMU ) can 
be derived from the location uncertainty principle [140]. 
It will keep the same structure except that the buoyancy is 
now transported in the stochastic sense (14). The horizontal 
velocity u = w is related to the buoyancy b in Fourier space 
through the usual SQG relation:

where k is the horizontal wave-vector. The unresolved 
velocity, �Ḃ , is also horizontal. Consequently, the vari-
ance tensor, a , is a 2 × 2 matrix and the SQGMU model is 
two-dimensional.

8.1.2 � Our SQG Simulations

High-resolution deterministic SQG simulations of test 
flows will provide references to which we will compare 
random simulations performed at a lower resolution. For 

(106)

b
△

= − g
��

�0
with �(x, y, z, t) = �0

(
1 −

N2

g
z

)
+ ��(x, y, z, t),

(107)û = ik⊥
b̂

N‖k‖ ,
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this purpose, the high-resolution ( 5122 ) simulation outputs 
will be projected onto the space of low-resolution ( 1282 ) 
fields, i.e. it will be addequately filtered and subsampled 
to a low-resolution. We will refer to this projected fields as 
“observations” and denote them bo . For all simulations, a 
standard hyperviscosity (HV) scheme has been introduced 
[71]:

with a positive coefficient � proportional to M−8
x

 where Mx 
denotes the grid size (i.e. 128 or 512). The domain size is a 
square box Lx × Ly = 1000 km×1000 km and the boundary 
conditions are doubly periodic.

Several simulations of these models have been per-
formed based on two types of initial fields and on vari-
ous paraterisations of uncertainty. A first type of initial 
buoyancy field is shown in Fig. 2a. As in Resseguier et al. 
[140], this field consists of a spatially smooth buoyancy 
field with two warm elliptical anticyclones (positive buoy-
ancy) and two cold elliptical cyclones (negative buoyancy) 
given by:

with

The amplitude of the buoyancy and the stratification are set 
to: B0 = 10−3ms−2 and N = 3f0 . The Coriolis frequency f0 
is fixed to 1.028 × 10−4s−1 , which corresponds to a latitude 
of 45◦.

Another type of initial buoyancy field is shown in 
Fig. 2b, which is a homogeneous Gaussian random field 

(108)Dtb = ��4b dt,

(109)

b0(x)
△

= F

(
x −

(
250 km

250 km

))
+ F

(
x −

(
750 km

250 km

))

−F

(
x −

(
250 km

750 km

))
− F

(
x −

(
750 km

750 km

))
,

(110)

F(x)
△

= B0 exp

(
−
1

2

(
x2

�2
x

+
y2

�2
y

))
and

{
�x = 67 km,

�y = 133 km.

generated from a spectrum of buoyancy with a prescribed 
slope equals to −5∕3 . This slope corresponds to the power 
law of a developped SQG turbulence.

We will now forecast the initial buoyancy fields of Fig. 2 
with serveral ensembles of simulations and assess the per-
formance of each of these ensembles. Short term and long 
term forecasts will be treated separately because they are 
very different in nature.

8.2 � Short‑Term Ensemble Forecast

As in the study Resseguier et al. [140], we first focus on 
the first-month forecast of the smooth initial field (Fig. 2a). 
Figure 3 shows the reference high-resolution simulation for 
this first month. After two weeks, filament instabilities [90] 
create developed turbulence. Here, we also study the free-
decaying SQG turbulence flow initialed by the rough field 
(Fig. 2b). The free-decaying turbulence can be seen in Fig. 4. 
A part of the initial energy is dissipated by the deterministic 
subgrid tensor. But, a part of this initial energy cascades to 
the larger scales by creating larger vortices from the merging 
of small vortices. Each ensemble cointains 30 realizations.

(a) (b)

Fig. 2   Two initial buoyancy (m s −2 ) fields : a A smooth field with 
four given vortices (cyclones in blue and anti-cyclones in red); b A 
homogeneous Gaussian field generated from a −5∕3-spectrum. (Color 
figure online)

Fig. 3   Buoyancy (m s −2 ) at t = 10, 15, 16, 18, 20, 30 days of advection 
for the usual SQG model at resolution 5122 , based on the smooth ini-
tial field—Fig. 2a
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Several low-resolution ensembles have been forecast. 
Two ensembles rely on initial conditions random perturba-
tions, three on dynamics under location uncertainty and 
five on the dissipation-adapted noise (see Sect. 5.3.2). Spe-
cifically, the small-scale velocity in the dynamics under 
location uncertainty and the random perturbation of initial 
condition in SQGPIC have been both generated using three 
approches: a homogeneous stationary model (denoted 
“Spectral”), a homogeneous non-stationary model 
(denoted “ADSD”) and a heterogeneous non-stationary 

model (denoted “SVDpseudo”). For the model under 
location uncertainty, it corresponds to parameterizations 
6.3.2, 6.3.3 and 6.3.10 respectively, of Sect. 6.3. For the 
“Spectral” method, the small-scale energy is specified 
by the diffusion coefficient a

2
= 9 m2 s−1 . We also need to 

choose the spectrum slope and the minimum and maxi-
mum wave-lengths of the unresolved velocity. For more, 
information on the values of these parameters, the reader 
can refer to Resseguier et al. [140]. In contrast, for the 
improved “ADSD” method, we do not need to choose any 
parameter. The parameterization must adapt itself using 
large-scale informations at each time step. Despite the 
difference of flow and resolution, the very same code—
without any modification—is used here and in Resseguier 
et al. [142] to define the “ADSD” small-scale velocity. For 
the ensembles with perturbed initial conditions, similar 
sampling methods are adopted. But the obtained “small-
scale” random fields are used only at the initial time. As 
an example, Fig. 5 shows the initial perturbation spectrum 
used in the “Spectral” method for the first initial condition 
(109). Then, it is added to the initial condition b(x, t = 0) . 
Besides, the dissipation-adapted noise 5.3.2 has been 
implemented in SQGMUMATLAB code. For this method—
denoted “WavHypervis”—we use a wavelet basis (ek)k∈ℤ . 
We have forecast 5 ensembles with 5 different values of 
the scaling factor �  . For instance, Fig. 6 shows us that 
under the same low-resolution, when the scaling factor � 
increases (i.e. when the noise variance contains a larger 
part of the numerical dissipation), more and more small-
scale structures are presented in physical field.

Once the ensembles have been produced by the previ-
ous models, we try to measure the quality of ensemble 
forecasts by some easy-to-implement criterions. We have 
Ne ensemble members for each forecast with b(i) denotes 
the i–th ensemble member of the forecast. A first nec-
essary condition for reliability is that the mean squared 
bias (MSB) of the ensemble (i.e. the MSE of the ensem-
ble mean) is close to the mean intra-ensemble variance 
(MEV), up to an ensemble size-dependant scaling factor :

Fig. 4   Buoyancy (m s −2 ) at t = 3, 6, 9, 12, 15, 18 days of advection for 
the usual SQG model at resolution 5122 , based on the random initial 
field—Fig. 2b

Fig. 5   Kinetic energy spectrum 
( m2

s
−4∕(radm−1) ), at the initial 

time, of the mean buoyancy, in 
blue, spectrum of its random 
perturbation, in red, and slope 
−

5

3
 in black. The initial pertur-

bation is restricted to a narrow 
spectral band. This random 
initial condition has been used 
to simulate an ensemble with 
the deterministic SQG model. 
(Color figure online)
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where

M the number of grid points xj , �̂{f } and V̂ar(f ) the empiri-
cal mean and the empirical variance of f, computed from the 
ensemble, respectively. At the same time, a classical error 
metric—the ensemble mean square error (MSE) is also con-
sidered :

In Fig. 7a, b, we compare the criterions (111) and (114) 
produced by our models. For the 4 vortices field Fig. 2a, it 
seems that for all models produce slight errors during the 

(111)MSB ≈
Ne + 1

Ne

MEV ,

(112)MSB
△

=
1

M

M∑
j=1

(
bo − �̂b

)2

(t, xj),

(113)MEV
△

=
1

M

M∑
j=1

V̂ar(b)(t, xj),

(114)MSE(t) = �̂

(
1

M

M∑
j=1

(bo − b)2(t, xj)

)
.

first 10 days. Their forecast skills tend to a stationary state 
after about 17 days’ advections. In this case, WavHypervis 
and SVDpseudo under location uncertainty have a better 
ensemble spread, yet conversely the homogeneous mod-
els—Spectral and ADSD have lower MSE. As illustrated 
in Fig. 7c, d, in the WavHypervis method, when the fac-
tor � increases, both the spreading and the ensemble errors 
increase. In Fig. 7e, f, we compare the results with the spec-
tral initial field Fig. 2b, in which the ensembles models tend 
to a stationary state much more faster. In this case, WavHy-
pervis and SVDpseudo under location uncertainty have still 
better ensemble spread. The forecasts by Spectral and ADSD 
consist of less errors in ensemble.

Another intuitive estimation of ensembles dispersions 
have been performed by Talagrand diagram. As shown in 
Table 1, under the 4 vortices background, the small perturba-
tions method applied on the initial condition is too underd-
ispersive. Instead, Spectral and ADSD under location uncer-
tainty formed a ∪-shape obtaining underdispersion and so 
higher but still underestimated variance. SVDpseudo under 
location uncertainty estimates high uncertainty. Instead, 
WavHypervis with 50% energy allocated from the numeri-
cal dissipation provides a slight overdispersion at last. This 
is probably due to a premature bifurcation in this ensemble 
(see Sect. 8.3 for more details about the bifurcation). From 
Table 2, with the spectral initial field, WavHypervis, and 
SVDpseudo under initial perturbations provide almost per-
fect ensemble spread. The ensemble skills converge toward 
a stationary state much faster for this flow.

As explained above, distinct models yield distinct spread-
ing based criterions (111), (114) and Talagrand diagram. 
Nonetheless, these two criterions type provide opposite con-
clusions. An objective analysis need hence others metrics 
like proper score (see Sect. 7). 

To begin, we will compare the numerical results with the 
proper score CRPS (see the Sect. 7.3). The CRPS is defined 
as a pointwise score. Applied on ensemble of spatio-tem-
poral fields, maps of CRPS can be represented at each fixed 
time step as in the Fig. 8. As expected on all maps of the 
Fig. 8, the normalized CRPS is relatively high on small scale 
structures and low on the center of each vortices. Indeed, 
turbulent structures are the hardest things to reproduced. 
Moreover, the Fig. 8 suggests that the model Spectral in 
SQGPIC is the worst model since it has the largest CRPS 
values. Model WavHypervis in SQGMU shows smaller CRPS. 
Thus reveals that this model makes fewer local errors at this 
advection time.

The CRPS has only been computed at one fixed time. So, 
again, it is difficult to conclude on which model is better.

To push further the analysis, we maps at different times. 
The Fig. 9 reveals a part of the spatial evolution of those 
CRPS maps for the model Spectral in SQGMU . With the 
random gaussian field as initial condition, we can see on 

Fig. 6   Comparison of one realisation of the buoyancy field after 
17 days of advection, according to various energy scaling factor in 
“WavHypervis” 
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the Fig. 9 that the CRPS structures are first small and 
spread over the spatial domain. Then, these small scale 
CRPS structures merge and create larger structures of 
larger intensity. The merging is due to the inverse energy 
cascade of SQG turbulence [90] which merges the badly 
resolved small-scale turbulence structures. On the top of 
that, the new large vortices have chaotic trajectories. The 
difficulty for the models to track these trajectories yield 
large CRPS values in the centers of those vortices.

Our analysis describes the variability of the CRPS in time 
and space. But, the difficulty to select a model remains to 
summarize the CRPS information.

The Fig. 10 summarizes model performances by repre-
senting each CRPS by one box plot. As such, we can directly 
see the variability of CRPS values over one CRPS map. For 
the four vortices initial condition, the model Spectral in 
SQGPIC has the most spread CRPS. Moreover, at 30 days 
of advection, it has the largest CRPS mean. Therefore, the 

(e) (f)

(c) (d)

(a) (b)

Fig. 7   Comparisons of ensemble forecasts for different stochastic 
models based on the two tested inital conditions : a The mean square 
error produced by different models under the background of 4 vorti-
ces; b The corresponding difference between mean square bias and 
mean ensemble variance; c, d Using the empirical noise (5.3.2) with 

wavelet basis and various energy scaling factors, under the back-
ground of 4 vortices; e, f Results under the spectral background. 
Notice that all these results are normalized by the amplitude - B0 - of 
the referent initial buoyancy fields
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Fig. 10 confirms that the model Spectral in SQGPIC has the 
worst uncertainties quantification skill. The models Spectral 
in SQGMU and ADSD in SQGMU obtain the lowest CRPS 
mean and spread at 20 and 30 days of advection. However, it 
is difficult to choose between these two models. Their CRPS 
distributions are too close. On the left panel of the Fig. 10 
spectral background, it is easier to select a model. Indeed, 
at 10 days of advection, the model Spectral in SQGPIC gets 
the lowest CRPS mean and at 20 days the model ADSD in 
SQGMU has the lowest mean. Nevertheless, it is still dif-
ficult to conclude about the most efficient model. Boxplots 
of CRPS give statistical description about this proper score. 
But, it does not analyze the multivariate structure of the 
error between the ensemble and the reference.

The Fig. 11 plots the normalized energy scores (see 7.4) 
of advection times. There, the analysed multivariate struc-
ture is the spatial structure of the random fields. The Fig. 11 
shows that the model Spectral in SQGPIC has the largest 
energy score for both initial conditions. So, this model pro-
vides the worst uncertainties quantification with multivariate 
spatially ensemble.

The model SVDpseudo in SQGPIC has a low energy 
score after two weeks of advection for the spectral 

background and after three weeks for the four-vortice 
initial condition. With the spectral background, after two 
weeks large-scale structures has formed and the model 
SVDpseudo in SQGPIC makes less error with the refer-
ence. Nevertheless, during the first week of advection, 
the model SVDpseudo in SQGPIC has a really large energy 
score because, small-scale structures are present and are 
not well reproduced by SVDpseudo in SQGPIC . So, in this 
case, the models SQGPIC are less efficient than the models 
SQGMU and WavHypervis.

For the four-vortice initial condition, the model SVDp-
seudo in SQGPIC has a larger energy score at 16 to 20 days of 
advection. During this period of advection, some small-scale 
structures are produced and well resolved by the simula-
tions. After this period, the energy score of SVDpseudo in 
SQGPIC decreases probably due to the bifurcation phenom-
enon described in Sect. 8.3.

The Fig. 11 suggests that models SVDpseudo in SQGMU 
and WavHypervis make the least error. Indeed, during the 
most important times steps and for both initial condition, 
these models show the lowest energy scores. In particular, 
the energy score of the WavHypervis method reveals that it 
is the most efficient model according to this metric.

Table 1   Talagrand diagram on 
some forecast days under the 
background of 4 vortices : (a)—
MU Spectral; (b)—MU ADSD; 
(c)—WavHypervis 50% ; (d)—
MU SVDpseudo; (e)—PIC 
Spectral; (f)—PIC SVDpseudo

Day 10 Day 20 Day 30

(a)

(b)

(c)

(d)

(e)

(f)
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We will now consider proper scores and variograms 
where the temporal structures are considered instead of 
the spatial ones. The Fig. 12 reflects that the model Spec-
tral in SQGPIC has the largest normalized energy score and 
variogram-0.5 score (see Sect. 7.5). On the edges of the 
centers of the vortices, this model encompasses the worst 
temporal structures. The models SVDpseudo in SQGMU and 
WavHypervis seem to perform better. Nonetheless, in the 
model Spectral in SQGMU , minimum values are located in 
the center of the vortices which indicates that the temporal 
evolution of the vortices is well reproduced by this model.

8.2.1 � Conclusion of the Short‑Term Forecasts Analysis

For this numerical study, ensemble forecast skills have been 
assessed through a set of verification tools. The Table 3 sum-
marizes validation scores estimated for each UQ model. 
Talagrand histogram is an evaluation of the calibration 
behavior of an ensemble, while proper scores focus on 
dispersion and errors between univariate or multivariate 
ensembles and references. Each verification score has his 
own specificity, it is essential to be aware of their properties 

to select the most suitable measure (see Sect. 7). Also, to 
avoid misselection of ensemble methods, the assessment of 
a number of scoring rules is advised.

In the Table 3, SQGPIC methods obtained the lowest over-
all verification scores. In contrast, ADSD in SQGMU , SVDp-
seudo in SQGMU and WavHypervis models present the best 
performances. Therefore, we recommend one of this method 
for UQ tasks, and we strongly advice to avoid relying only 
on initial conditions randomization.

The model ADSD in SQGMU has the best overall MSE, 
meaning that it introduces less errors than other UQ meth-
ods. The model SVDpseudo in SQGMU and WavHypervis get 
lower MSE performances. Yet, theirs CRPS, ES and VS are 
the best among all the methods. This illustrates the accurate 
univariate and multivariate UQ produced by SVDpseudo in 
SQGMU and WavHypervis algorithms. WavHypervis model 
reveals a weaker MSB score analysis than SVDpseudo in 
SQGMU induced by a lack in the ensemble spread. For this 
reason, if one UQ method has to be chosen among ADSD in 
SQGMU , SVDpseudo in SQGMU and WavHypervis models, 
it would probably be SVDpseudo in SQGMU . Nevertheless, 
the higher UQ skills of this method also come with a slightly 
higher CPU time.

Table 2   Talagrand diagram on 
some forecast days under the 
spectral background : (a)—MU 
Spectral; (b)—MU ADSD; (c) 
– WavHypervis 50% ; (d)—MU 
SVDpseudo; (e)—PIC Spectral; 
(f)—PIC SVDpseudo

Day 5 Day 11 Day 17

(a)

(b)

(c)

(d)

(e)

(f)
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Fig. 8   CRPS of each model after 20 days of advection with an initial condition based on a smooth field with four given vortices
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This numerical study have characterized UQ skills of 
short-term ensemble forecasts. To complete the analysis, 
we now focus on long-term forecast.

8.3 � Long‑Term Ensemble Forecast

After the first month of advection, the flow initiated with 
(109) (Fig. 3) breaks its symmetries. This leads to a chaotic 
behavior and a complete loss of (deterministic) predictabil-
ity. In this section, we will focus on this regime. As demon-
strated here, the bifurcation associated with the symmetry 
breaking is efficiently tracked using the model under location 
uncertainty. Using few realizations, the probability density 
functions of each subsequent scenarios is well characterized, 
whereas methods based on random initial conditions do not 
converge. The identification of several scenarios, done at 
each time step in a reduced subspace, is obtained by Prin-
cipal Component Analysis (PCA), also termed Empirical 
Orthogonal Functions method (EOF).

Finally, a diagnosis of bifurcation is performed and dis-
cussed from both the model under location uncertainty and 
a method based on randomized initial conditions.

8.3.1 � Chaotic Test Flow and Resolution Issues

The boundaries conditions of the simulation are doubly peri-
odic and, for the initial condition (109), there is a meridional 
line of symmetry at x = 500 km. Therefore, the zonal period 
of the initial condition is Lx∕2 = 500 km. This periodicity 
is relatively stable and holds during the first month. Nev-
ertheless, the SQG dynamics, is subject to an inverse cas-
cade of energy [20], and vortices of the same sign tend to 
merge. When this merging occurs, this affects the global 
shape of the flow. In particular, the periodicity that remains 
in the first month eventually disappears. This symmetry is 
hence metastable rather than stable. The symmetry break-
ing corresponds to a transition from one “state” to another. 
By “state”, we mean a relatively “compact” and connected 
subspace of the state space. Warm vortices can merge at 
x = 0 or at x = 500 km. In the following, we will refer to the 
first case as “scenario 1”, and to the second case as “scenario 
2”. Because of the periodic boundary conditions, these two 
possible transitions are likely to occur. In a deterministic 
numerical simulation, the appearance of one transition or 
the other is determined by an infinitesimal asymmetry in the 
initial condition or possibly by a numerical error. This is a 
bifurcation. The bifurcation related to the merging of cold 
vortices is similar. With those two simultaneous bifurca-
tions, there are thus 2 × 2 = 4 likely transitions.

To trigger a particular transition, we introduce two infin-
itesimal modifications in the initial condition. For the sake 
of simplicity, we focus on the bifurcation associated with 
the warm vortices. To do so, the merging of cold vortices 
in x = 500 km will be forced, by adding an infinitesimal 
small-scale cold eddy in (x, y) = (480, 750) (in km). The 
barycentre of northern structures becomes slightly closer 
to x = 500 km. This gives rise to the desired transition, 

Fig. 9   Normalized CRPS of the model mu spectrum during 5,10 and 
20 days of advection with an initial condition based on an initial ran-
dom gaussian field
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as shown in Figs. 13 and 14. To trigger the bifurcation 
associated with the southern warm vortices, an infinitesi-
mal small-scale eddy has been added in (x, y) = (20, 250) 
(in km). If the eddy is warm, the southern barycentre is 
moved closer to x = 0 , and the two warm vortices merge 

near x = 0 (scenario 1), as shown in Fig. 13. If this eddy 
is cold, the southern barycentre is moved closer to x = 500 
km, and the two warm vortices merge near x = 500 km 
(scenario 2), as shown in Fig. 14. The exact expression of 
the initial condition is the following:

Fig. 10   Box plot of the normalized CRPS computed on the ensemble at each spatial points of each model at different time step of advection for 
two different initial condition (left: Random gaussian field, right: Four given vortices)

Fig. 11   Normalized energy score for each model and spatial multivariate ensemble on all time steps and both initial condition (left: Random 
gaussian field, right: Four given vortices)
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Fig. 12   Normalized energy 
score and variogram-0.5 score 
of the temporal multivariate 
ensemble of each models at 
each spatial points with an 
initial condition based on the 
four vortices (left column: 
normalized energy score of each 
model, right: normalized vari-
ogram-0.5 score of each model)
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where the large-scale field, b0 , and the two-dimensional 
Gaussian function, F, remain defined by (109) and (110). 
The factor sw is set to 1 (respectively −1 ) if one wants to 
force the scenario 1 (respectively the scenario 2). The size 
of the large vortices of b0 is of the order of the Rossby radius 

(115)

b(x, t = 0) = b0(x) + 0.3swF

(
1

40

(
x −

(
20 km

250 km

)))

− 0.3F

(
1

40

(
x −

(
480 km

750 km

)))
,

Table 3   Model performance by score, MSE: Mean squared error 
(pointwise), MSB: Mean squared bias (pointwise), CRPS: Continu-
ous ranked proper score (pointwise), ES: Energy score (spatial and 
time)

Model MSE MSB CRPS ES VS

SQG
MU

SPEC
+ + + + +

SQG
MU

ADSD
++ + + + +

SQG
MU

SVD
− ++ ++ ++ ++

WavHypervis50 − + ++ ++ ++
SQG

PIC
SPEC

− − − − − − − −
SQG

PIC
SVD

− − − + + +

Fig. 13   Buoyancy ( m s
−2 ) at t = 0, 30, 40, 50, 55, 60, 70 and 80 days 

of advection for the SQG model at resolution 5122 . Here, a cold 
and a warm very small eddies are added respectively in the top and 
the bottom of the initial condition. These eddies are highlighted by 
respectively a blue square and a red square. This small difference in 
the initial condition does not modify the flow until the onset of the 
symmetry breaking, the 40th day. Since the flow is chaotic, the small 
perturbation at t = 0 determines how the symmetry breaking occurs a 
month and a half later. (Color figure online)

Fig. 14   Buoyancy ( m s
−2 ) at t = 0, 30, 40, 50, 55, 60, 70 and 80 days 

of advection for the usual SQG model at resolution 5122 . Here, two 
very small cold eddies are added in the top and the bottom of the ini-
tial condition. They are highlighted by two blue squares. This small 
difference in the initial condition does not modify the flow until the 
onset of the symmetry breaking, the 40th day. Since the flow is cha-
otic, the small perturbation at t = 0 determines how the symmetry 
breaking occurs a month and a half later. (Color figure online)
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Ld , whereas the small-scale eddies spread only over few 
kilometers.

The high-resolution simulations corresponding to sce-
nario 1 and 2 are displayed in Figs. 13 and 14, respec-
tively. At this resolution, the evolution toward scenario 1 
or scenario 2 is determined by the value of the parameter 
sw (i.e.+∕ − 1 ). The associated variations are hardly taken 
into account by the low-resolved SQG model, as shown 
in Fig. 15. The two SQG simulations correspond to 70 
days of advection at high and low resolution, respectively. 
Both simulations have been initialized in the same way 
( sw = 1 ). The low-resolution field differs from the high-
resolution field, as it apparently followed the wrong tran-
sition. As understood, whatever the random or determin-
istic nature of the tracer evolution law, a dissipation or a 
filtering at small scales is necessary to remove aliasing 
effects. In present simulations, the dissipation is created 
by an hyperviscosity scheme. At low resolution, the ini-
tial perturbation is rapidly diffused (few days). When the 
symmetry breaking occurs, after 40 days of advection, 
this initial perturbation has been completely forgotten. 
Moreover, another infinitesimal asymmetry triggers the 
other likely transition. According to the expression of b0 
(equations (109) and (110)), the large scale of the initial 
condition is not exactly zonally periodic with period 500 
km. The southern part is slightly warmer in the middle. 
Indeed, the value of b0 on (x, y) = (500, 250) (in km) is 
about 1.8 × 10−5ms−2 , and on (x, y) = (0, 250) (in km) is 
about 8.8 × 10−6ms−2 . The initial barycentre of the south-
ern structures is thus closer to x = 500 km. This asymme-
try has a very weak amplitude but a large spatial length 
scale which prevents its diffusion. This explains the merg-
ing in the wrong location.

In the next section, we will show that low-resolution 
simulations of the dynamics under location uncertainty 
can retrieve the right scenario.

8.3.2 � Stochastic Analysis

Unlike the deterministic SQG model, the SQG dynamics 
under location uncertainty, with the exact same initializa-
tion sw = 1 , yields several likely transitions. Here, for sim-
plicity, only the variant Spectral of SQGMU is considered 
(neither ADSD nor SVDpseudo). The calibration Spectral 
of SQGMU is detailed in Sect. 6.3.2. In Fig. 16, we show 
two realizations of the SQGMU dynamics. One of those 
realizations corresponds to the reference scenario (sce-
nario 1), the other does not. The model encodes several 
likely transitions, and thus several potential scenarios. 
Indeed, the random forcing provides various small-scale 
perturbations that may trigger these transitions. As this 
triggering is random, the large-scale changes are also ran-
dom. In other words, there is a backscattering of uncer-
tainty toward the large scales, as illustrated in Fig. 17. We 
decomposed the mean omni-directional spectrum, i.e. the 
mean energy at a given scale, �̂{𝛤b} , into the spectrum 
of the mean tracer, 𝛤�̂{b} , (blue line) and the mean spec-
trum of the tracer random component, �̂

{
𝛤b−�̂{b}

}
 , (shaded 

grey):

where �(�) denotes the area of the domain � , �̂{f } the 
empirical mean of f, computed from the ensemble, and f̂  
the Fourier transform of f.

(116)�̂{𝛤b} = �̂

�
1

𝜇(𝛺) ∮ ‖k‖2�b̂�2d𝜃k
�
,

(117)

=
1

𝜇(𝛺) ∮ ‖k‖2
�

��̂{b̂}�2
���

Energy of

the mean

+ �̂
��b̂ − �̂{b̂}�2�

�������������������
Variance

�
d𝜃k,

(118)= 𝛤�̂{b} + �̂
{
𝛤b−�̂{b}

}
,

Fig. 15   Buoyancy ( m s
−2 ) after 70 days of advection for the SQG 

model at resolution 5122 ( left) and at resolution 1282 (right). The 
small-scale perturbation in the initial condition activating the symme-
try breaking in the reference simulation ( 5122 ), is dissipated in few 
days in the low-resolution simulation. This makes this single low-res-
olution simulation erroneous

Fig. 16   Two realizations of buoyancy ( m s
−2 ) after 70 days of advec-

tion for the SQG under location uncertainty at resolution 1282 . Event 
though the small-scale perturbation in the initial condition is dis-
sipated in few days, the small-scale component of the dynamics 
under location uncertainty randomly triggers the symmetry breaking. 
Therefore, some realizations follow the right transitions (left) and 
some do not (right)
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One can then wonder about the number of realizations 
following the right scenario. This necessitates the analysis 
of the 4-dimensional spatio-temporal random field (
b(i)(xj, yk, tl)

)
ijkl

 . The superscript (i) designates the i-th 
realization of the ensemble. To reduce the associated 
dimension, a Principal Component Analysis (PCA)—also 
termed Empirical Orthogonal Function (EOF) representa-
tion—is performed over the realizations, at a fixed time t. 
Within this analysis, unlike usual EOF representation, the 
time axis is replaced by the realization index. At a given 
time, it helps to represent the whole ensemble (200 reali-
zations of the random field) by the ensemble mean field 
and few other EOF spatial modes. In the present case, the 
buoyancy is approximated as:

where Ne is the size of the ensemble, NEOF ≪ Ne is the num-
ber of EOF modes chosen to described the whole ensemble 
and the 

(
�n

)
1⩽n⩽NEOF

 denote the EOF spatial modes. Those 
spatial fields are orthogonal:

(119)b(i)(x, t) = �̂(b)(x, t) +

Ne∑
n=1

c(i)
n
(t)𝛹 (x, t),

(120)≈�̂(b)(x, t) +

NEOF∑
n=1

c(i)
n
(t)𝛹n(x, t),

with M the number of grid points. The mean energies—or 
variances—of EOF coefficients correspond to the eigenval-
ues of the two-points correlation matrix; they are ordered in 
decreasing order and represent the energies associated with 
each spatial mode. To describe the ensemble with respect 
to a maximal variance point of view, only the EOF coeffi-
cients cn concentrating the largest part of the buoyancy mean 
energy are kept. This energy, which differs from the energy 
of the mean, reads:

(121)
1

M

M∑
j=1

�n(xj, t)�m(xj, t) = �nm,

(122)

�̂

{
1

M

M∑
j=1

b2(xj, t)

}

���������������������������
Mean energy

=
1

M

M∑
j=1

(
�̂(b)

)2
(xj, t) +

1

M

M∑
j=1

�Var(b)(xj, t),

Fig. 17   Tracer spectrum 
( m2

s
−4∕(rad.m−1) ) after 30 days 

(top) and 70 days (bottom) of 
advection for SQG model at 
resolution 5122 (green), one 
realization of SQGMU model, 
�
b(1)

 , at resolution 1282 (red 
dashed line), the spectrum of 
the mean, 𝛤�̂{b} , (blue line) 
and the mean spectrum of the 
tracer random component, 
�̂{𝛤

b−�̂{b}} , (shaded grey). After 
being stacked, the two last plots 
represent the mean spectrum: 
�̂{𝛤

b
} = 𝛤�̂{b} + �̂{𝛤

b−�̂{b}} . 
The more thick the shaded grey 
area is, the more variance is 
contained at this scale. At t = 30 
days, the variance remains at 
small scales but this small-scale 
uncertainty activates the sym-
metry breaking. This results in 
a variance backscattering with 
a thickening of the spectrum of 
the random component at large 
scales (visualized at t = 70 ). 
Since large scales influence 
strongly the small scales the 
small-scale variance is also 
enforced. (Color figure online)
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In Fig. 18, left part, the energy associated with the differ-
ent spatial modes is displayed. At t = 30 days, the energy of 
the mean field, denoted as a 0-th order EOF (index+1 = 1 ), 
is much larger than the variance field, described by the other 
EOFs. On the contrary, at t = 70 days, after the breaking 

(123)
=

1

M

M∑
j=1

(
�̂(b)

)2
(xj, t)

�������������������������
Energy of the mean

+

Ne∑
n=1

�̂
{
c2
n
(t)
}

�����

Mean energy of

the n-th EOF

.

symmetry, the energy of the mean and the variance have the 
same order of magnitude. The variance is mainly explained 
by the fist EOF. Thus, at the first order, the randomness of the 
tracer is approximately encoded by this first EOF coefficient, 
c1 . Its probability density function and the joint probability 
density function for the two first EOF coefficients presented 
in Fig. 18 are unimodal at t = 30 days and bimodal at t = 70 
days. Note that the tracer is clearly non-Gaussian. The symme-
try breaking has created two likely scenarios in the ensemble. 
The scenario corresponding to negative values of the first EOF 
coefficient (probability of 47% ) is called scenario A and the 
scenario corresponding to positive values (probability of 53% ) 

Fig. 18   Energy of the EOFs ( m2
s
−4 ) (left), probability density func-

tion of the first EOF coefficient (middle) and joint probability den-
sity function for the two first EOF coefficients (right) after 30 days 
(top) and 70 days (bottom). The ensemble is simulated according to 
the SQG model under moderate uncertainty at resolution 1282 . At 
t = 30 days, the energy of the mean field, denoted as a 0-th order EOF 
(index+1 = 1 ), is much higher than the variance field, described by 
the other EOFs. On the contrary, at t = 70 days (after the symmetry 
breaking), the energy of the mean and variance have the same order 
of magnitude. The variance is mainly explained by the first EOF. 

Therefore, at the first order, the random component of the tracer can 
be approximated by this first EOF. The probability density function 
of the first EOF coefficient and the joint probability density func-
tion for the two first EOF coefficients are unimodal at t = 30 days 
and bimodal at t = 70 days. The breaking symmetry has created two 
likely scenarios, which are very different from one another. The sce-
nario A corresponds to negative values of the first EOF coefficient 
(probability of 47% ) whereas the scenario B corresponds to positive 
value (probability of 53% ). The red line separates the probability den-
sity function between the two scenarios



New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse‑Grid…

1 3

is called scenario B. The red line at zero separates the prob-
ability density function between the two scenarios. In Fig. 19, 
the same probability density function along time is plotted. 
The bifurcation is clearly visible. Also shown, the mean buoy-
ancy ( ms−2 ) of the two likely scenarios are represented after 
70 days of advection. The two mean fields, �̂(b|1) and �̂(b|2) , 
are calculated as:

(124)

�̂(b�1) = �̂(b) + �̂(c1�1)𝛹1

= �̂(b) +

⎛
⎜⎜⎜⎝

1

#
�
i�c(i)

1
< 0

�
�
c
(i)

1
<0

c
(i)

1

⎞
⎟⎟⎟⎠
𝛹1,

where # stands for the cardinality of a set. The scenario A 
is quite close to the scenario 1, which is the reference with 
this initial condition, whereas scenario B is close to sce-
nario 2. The stochastic model has enabled the ensemble to 
track both scenarios and to describe them statistically. Let us 
point out that the shape of the isotropic small-scale velocity 
expression has been loosely fixed by an a priori form of the 
spectrum. Some learning procedures of the noise topology 
from past data could lead to express more informative het-
erogeneous random fields, and to statistically favor the most 

(125)

𝔼̂(b�2) = 𝔼̂(b) + 𝔼̂(c1�2)𝛹1

= 𝔼̂(b) +

⎛
⎜⎜⎜⎝

1

#
�
i�c(i)

1
⩾ 0

� �
c
(i)

1
⩾0

c
(i)

1

⎞
⎟⎟⎟⎠
𝛹1,

Fig. 19   Probability density 
function of the first EOF 
coefficient along time (top), 
buoyancy ( m s

−2 ) after 70 days 
of advection for the mean of the 
two likely scenarios A and B of 
the SQGMU model at resolu-
tion 1282 (respectively middle 
left and middle right) and the 
reference scenarios 1 and 2 at 
high resolution 5122 (respec-
tively bottom left and bottom 
right). The bifurcation is clearly 
visible on the top plot. The two 
likely scenarios differ from the 
sign of the first EOF coefficient. 
They are almost associated 
with an equal probability of 
occurrence: a probability of 
47% for scenario A and a prob-
ability of 53% for scenario B. 
The scenario A (respectively 
B) is similar to the scenario 1 
(respectively 2)
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likely transition. Moreover, since the two scenarios are very 
different, the introduction of few observations, through an 

assimilation procedure, could very easily help to select the 
right scenario.

Fig. 20   Energy of the EOFs ( m2
s
−4 ) (top left), probability density 

function of the first EOF coefficient (top middle), joint probability 
density function for the two first EOF coefficients (top right) after 70 
days, probability density function of the first EOF coefficient along 
time (middle), buoyancy ( m s

−2 ) after 70 days of advection for the 
means of the two likely scenarios A and B (bottom left and bottom 
right respectively). The ensemble is simulated according to the usual 

deterministic SQG model with random initial conditions at resolu-
tion 1282 . The joint probability density function for the two first EOF 
coefficients suggests only one likely scenario. The central Figure 
confirms that this model fails to correctly describe the bifurcation. 
Indeed, the probability density function appears to be not converged 
in this case. The bottom Figures show that the worst resolved sce-
nario (the scenario A) is the one similar to the true reference scenario 
(the scenario 1)
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For sake of comparison, we also show results obtained 
using the deterministic SQG model, with the “Spectral” per-
turbation of the initial conditions. This method was already 
used in the previous section for short-term forecast. We first 
briefly recall how these perturbations are generated. Initial 
small-scale buoyancy perturbations are assumed Gauss-
ian and sampled from a ( − 5

3
 ) spectrum, as shown in Fig. 5. 

These perturbations should not change the large-scale flow 
before the predictability time (about one month). Accord-
ingly, we require those perturbations to be of small ampli-
tudes and restrict them to small scales. The same analysis is 
performed, including the EOF decomposition and the dis-
tinction between two likely scenarios. Figure 20 gathers the 
results. After 70 days of advection, the scenario A is hardly 
visible in the probability density function of the first EOF. 
The ensemble estimates a probability of only 39% for the 
reference scenario. The SQGMU ensemble estimated a prob-
ability of 47% . Moreover, the probability density function 
is very noisy. This suggests that the ensemble may not be 
converged, i.e. the empirical statistics of the ensemble will 
change if the ensemble size grows. The scenario A com-
pletely disappears in the joint probability density function 
for the two first EOF coefficients. The probability density 
function of the first EOF along time, before and after the 
symmetry breaking, exhibits very narrow branches associ-
ated with high probabilities, compared to Fig. 19. It indicates 
that randomized initial conditions may lead to underdisper-
sive ensemble. Furthermore, in Fig. 20, trajectories of some 
realizations are still visible after the bifurcation. This con-
firms that the probability density function did not converge. 
Indeed, to estimate this density, we use the well-known 
Parzen-Rosenblatt estimator [123, 144]: each realization is 
associated with a kernel and the estimator is the sum of those 
kernels. Here, some realizations or set of few realizations are 
isolated and create spikes in the estimator. More realizations 
would be needed to have almost continuously distributed 
realizations. In other words, the ensemble is not converged. 
This drawback could be expected for at least two reasons. 
First, the structure of the initial noise contains little physical 
information, while the dimension of the state space is huge. 
Without phase information, covering all the possibilities 
requires a very large number of realizations. Furthermore, 
the subgrid tensor diffuses the small-scales components of 
the tracer where the ensemble variability is encoded. This is 
a known feature of ensemble forecasts: ensemble members 
tend to align with most unstable directions of the dynam-
ics [60, 91, 117]. Since small scales are stabilized by the 
subgrid tensor, the ensemble shrinks to span a smaller large-
scale unstable subspace [146]. On the contrary, the stochas-
tic model associates phase and intermittency with the noise 
and continuously injects it into the dynamics. The phase 
information or inhomogeneity as well as the non-Gaussi-
anity come from the multiplicative structure. Even though 

the uncorrelated velocity is only prescribed by a spectrum, 
the tracer gradients have phase and dynamically constraint 
the regions of application of the noise. This process makes 
the stochastic forcing much more efficient. Hence, a smaller 
number of realizations are needed. In Fig. 20, the conver-
gence of the probability density function of scenario B (posi-
tive values of the first EOF coefficient) seems slightly better 
than the density of scenario A. Unfortunately, the bottom 
Figures shows that the scenario B is not the one followed by 
the high-resolution simulation. Let us note that the reference 
is deterministic. Accordingly, the reference probability den-
sity is a dirac measure. Indeed, the deterministic reference 
initial condition is assumed to be known and is used in all 
large-scale simulations. Moreover, the reference dynamic 
defined by the high-resolution SQG model is deterministic 
as the real ocean dynamics is. The bad description of the 
scenario A tends to confirm that the SQG model with ran-
domized initial conditions fails to describe the bifurcation.

Another argument is the distance between the reference 
and each ensemble. In Fig. 21 reports the error correspond-
ing to the realization closest to the reference, i.e. with mini-
mal error, for each ensemble. In geophysical data assimila-
tion, large confidence is often given to observations. Thus, 
the maximum a posteriori estimator is almost equal to the 
minimal error realization. Fig. 21 shows that the ensemble 
from the stochastic model is closer to the reference than the 
ensemble with randomized initializations. It suggests that 
the stochastic method should lead to a better maximum a 
posteriori estimator.

8.3.3 � Conclusion of the Long‑Term Forecasts Analysis

In this study, long-time forecasts of two different SQG mod-
els have been compared. The first one corresponds to the 
classical SQG equations with a random initial condition. 
The second one is the SALT-LU SQG, derived from a sto-
chastic expression of the transport equations (see Sect. 6). 
Both models are compared to a high-resolution simulation 
reference.

Fig. 21   Minimum normalized error along time in the ensemble with 
random initial conditions (red) and in the ensemble with random 
dynamics (blue). The square error was integrated over the space and 
divided by the energy of the reference. (Color figure online)
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The chosen high-resolution reference is subject to a 
bifurcation after 40 days of advection. An infinitesimal 
modification of the initial condition determines the global 
shape of the flow two months later. Depending on the 
value of this initial modification, two different scenarios 
are isolated. For the same initial condition, the determin-
istic high-resolution and the low-resolution simulations 
do not follow the same transition. Indeed, the sub-grid 
tensor associated with the coarser resolution diffuses 
the crucial initial perturbation before the transition. This 
makes the deterministic forecast useless. This result ques-
tions the classical definition of predictability and associ-
ated error which only rely on initial perturbations [100]. 
Note that before the symmetry breaking, the large-scale 
errors induced by slight modifications of the initial condi-
tions are negligible in front of large-scale model errors. 
To recover, the true scenario at low resolution, a possible 
solution could be to randomize the initial condition. As 
shown, this solution would require a large number of real-
izations. At the opposite, the proposed stochastic model 
tracked both scenarios. Its efficiency is mainly explained 
by the continuous injection of multiplicative noise. This 
structure dynamically constrains both the phase and the 
intermittency of the noise. The model achieved to predict 
the likelihood and the point-wise tracer probability den-
sity in each case.

To identify and separate the scenarios, a simple thresh-
old is sufficient regarding the high energy distributed 
along the first PCA axis. For more realistic flow, the 
number of scenarios is likely to be larger. Hence, this 
classification may be inadequate and more advanced clus-
tering methods (e.g. k-means and expectation-maximi-
zation algorithms) are probably required. In this paper, 
this ensemble aggregation was used as a diagnosis. But, 
it could also improve filtering methods. Indeed, for geo-
physical flows, the state-space dimension being large, the 
ensemble size is generally too small to encode all pos-
sibilities. So, when an observation is assimilated, only 
few realizations of the ensemble are close enough, and 
all the others are considered useless. This often leads to 
filter degeneracy. Considering distance to likely scenarios 
rather than distance to realizations may help preventing 
this deficiency.

While the numerical analysis of this Sect. 8 is applied 
to a randomized version of the SQG model with toy ini-
tial conditions, the multiplicative structure of the noise 
and the balance with diffusion hold for any fluid dynam-
ics models under location uncertainty. This suggests that 
similar conclusions could be expected in more complex 
problems. Hence, this SALT-LU method opens for new 
ensemble forecasts methods, for both short-term forecasts 
and climate projections where uncertainty quantification 
is a main issue [1].

9 � Conclusion

We have reviewed existing methods to generate ensem-
ble forecasts quantifying modes errors related to coarse 
resolution in computational fluid dynamics. The accuracy 
of this quantification being a main issue in data assimi-
lation, the paper began by recalling the principles of 
that simulation-measurement coupling framework. We 
have categorized UQ methods based on their relations to 
coarse-graining. Though they have not been proposed in 
UQ context, we have also covered stochastic backscatter-
ing models, since they have inspired several UQ methods. 
Many UQ methods deal with random parameters, forcing, 
boundary or initial conditions. The latter type of methods 
has been widely misused to quantify resolution-induced 
error. While covariance inflation mitigates this issue, most 
of the data assimilation community now reckons that ran-
domizing initial conditions underestimates resolution-
induced errors. To tackle this issue, many authors intro-
duces Gaussian and non-Gaussian noises in the dynamical 
equations. Most of these stochastic models are empirical, 
but more and more are based on energy budgets or derived 
from physical principles. Many of the latter assume a time 
scale separation in the dynamic.

After presenting a new UQ method (WavHypervis) 
adaptable to most deterministic subgrid dissipation, we 
have focused on a recent family of stochastic subgrid mod-
els: the dynamics under location uncertainty (LU) and 
the stochastic advection by Lie transport (SALT). These 
frameworks rely on a time scale separation of the velocity 
field, and a stochastic Navier–Stokes model. In the lat-
ter, the large-scale velocity component is transported—
up to some forcings—by the small-scale and the large-
scale random velocity components. Rigorously derived 
from stochastic calculus theory, this stochastic transport 
can be decomposed into a skew-symmetric multiplicative 
noise and an eddy-viscosity-like diffusion term. Being a 
transport, it naturally ensures the conservation of many 
physical invariants. LU and SALT models differ in the 
interpretations of “transport” (classical fluid dynamics VS 
geometric interpretation) and of “large-scale velocity”. 
The first interpretation difference implies in particular that 
the dynamics under location uncertainty conserves kinetic 
energy whereas stochastic advection by Lie transport 
conserves helicity and circulation. The second interpreta-
tion difference leads to a modification of the large-scale 
advection in LU models. After an extended theoretical 
description, we have reviewed existing parameterization 
choices—i.e. subgrid velocity statistics modeling—for the 
SALT-LU framework.

Then, after briefly presenting the state-of-art metrics 
to assess UQ skills, new numerical results have been 
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presented. We have compared the WavHypervis method, 
the dynamics under location uncertainty and the randomi-
zation of initial conditions. Test cases were short-term 
and long-term predictions of free decaying turbulence. 
The chosen dynamics was a two-dimensional meteoro-
logic and oceanic model called the Surface Quasi-Geo-
strophic dynamics. For this flow, SALT and LU models 
mostly coincide (only the large-scale advection correction 
differs). Our results confirm that initial conditions rand-
omization is not adapted to resolution-induced UQ, and 
that the dynamics under location uncertainty accurately 
spreads ensemble members along time. LU and WavHy-
pervis short-term forecasts show very good calibrations 
and UQ scores. In particular, the recent LU parameteriza-
tions ADSD and SVDpseudo obtain the best UQ scores. At 
long term, even after a bifurcation of the reference fluid 
dynamics, the model under location uncertainty accurately 
and smoothly describes the likely scenarios.

SALT and LU dynamics are now mature frameworks. Yet, 
many questions remain.

First, it is still unclear whether SALT or LU is more 
appropriate for UQ purpose. Many numerical studies with 
appropriate UQ metrics and/or with data assimilation pro-
cedures would probably be necessary to try to answer this 
question.

Another possible research focus is the improvement of 
SALT-LU parameterizations. ADSD method is a promising 
one since it is parameter-free, fast, accurate and could in the-
ory adapt itself to any turbulent dynamics. Nevertheless, this 
method is currently defined in the Fourier space. Developing 
a physical-domain-based ADSD implementation would be 
very useful. Scaling estimations of relative diffusion [78] or 
velocity structure function [53] and Matérn covariances [97, 
98, 142, 168] could probably help in this task. An adapta-
tion of this method to complex boundary conditions would 
also be needed. The Gaussian unresolved velocity moments 
conditionally to the unresolved velocity boundary conditions 
may give a path toward this direction. New spatial aniso-
tropic and heterogeneous SALT-LU parameterizations – like 
SVDpseudo—would also be helpful. Current works based on 
data-driven methods (related e.g. machine learning, Koop-
man operator, Girsanov-based maximum likelihood estima-
tions) are on going.

LU and SALT long-term purpose concerns data assimila-
tion. Premiminary studies have been published towards that 
direction. Using the pseudo-stochastic Navier–Stokes model 
under location uncertainty (see Sect. 6.2.3) and a dynamics 
error model, Yang and Mémin [172] have assimilated high-
resolution observations into simple shallow-water models. 
Yang and Mémin [173] have applied the Navier–Stokes 
model under location uncertainty (see Sect. 6.2.1) to ensem-
ble filters. They have proposed estimations of both the covar-
iance model error and the variance tensor. Using SALT and 

particle filters, Cotter et al. [32] assimilate data in a 2D Euler 
dynamics. Works on similar assimilation procedures with 
a quasi-geostrophic dynamics are on going. Yet, SALT-
LU-based data assimilation is still in its infancy. Those 
first promising results need to be extended and assessed on 
more realistic fluid dynamic model. For flow control pur-
poses, very fast data assimilation procedures could also be 
developped in stochastic reduced order frameworks ([137], 
chapter 8).
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Appendix 1: Spectral Energy Flux in Models 
Under Location Uncertainty

In the homogeneous case, �dBt = �̆ ∗ dBt and a = a0�d does 
not depend on x. Therefore, a – possibly active—tracer q is 
solution of:

For sake of simplicity, we do not explicitly show the time 
dependence in q and its Fourier transform, in this appendix. 
In Fourrier space, we get an infinite dimensional SDE (not 
an SPDE):

To find a PDE associated to the Fourier modes of the tracer 
(Fokker-Planck equation), we need an SDE in ℝ . The pre-
vious one is in ℂ . Either we consider the closed coupled 
equations on the real part, ℜ(q̂(k)) , and imaginary part, 
ℑ(q̂(k)) , either we decompose trough modulus and phase. 
The equation on the modulus is not closed but still very 
instructive. From now on, the dimension of the spatial space, 
d, will be 2. However, we expect that the following results 
are still correct for d = 3 . Since �dBt is divergence free, we 
set �̆ = �

⊥𝜓𝜎 . We can notice that:

and then,

(126)0 = Dtq = dtq +
(
wdt + �dBt

)
⋅ �q −

a0

2
�qdt.

(127)

dtq̂(k) = −
1

(2𝜋)d ∫ℝd

�
ŵ(k�)dt + ̂̆�(k�) ̂dBt(k

�)
�

⋅ i(k − k�)q̂(k − k�)dk�

−
a0

2
‖k‖2

2
q̂(k)dt.

(128)d⟨Bt(x1),Bt(x2)⟩ = �(x1 − x2)dt,
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The classical Ito formula in ℂ , Eq. (127) and the above result 
lead to:

dF2 does not modify the mean spectral energy budget since 
�(dF2) = 0 , even if it modifies the law of |q̂(k)|2 . Note that 
the mean spectral energy budget is the study of the evolution 
of �|q̂(k)|2 whereas the spectral energy budget of the mean 
is the much more trivial study of |�(q̂(k))|2 . We can explicit 
the Laplacian term using the following expression of the 
variance tensor, based on the homogeneity assumption:

Injecting this into the spectral energy budget yields:

(129)
ℜ

{
d
⟨
B̂t(k1), B̂t(k2)

⟩}

= ℜ

{
∬(ℝd)2

𝛿(x − y)e−ik1⋅xe+ik2⋅ydxdy

}
dt

(130)= (2�)d�(k1 − k2)dt.

(131)
dt|q̂(k)|2 = 2ℜ

{
q̂(k)dq̂(k)

}
+ℜ

{
d < q̂(k), q̂(k) >

}
,

(132)

= −a0‖k‖22q̂(k)dt + 2

(2𝜋)d
ℜ∫

ℝd

ŵ(k�) ⋅ i(k − k�)q̂(k − k�)q̂(k)dk�

���������������������������������������������������������������������
=F1

dt

+
2

(2𝜋)d
ℜ∫

ℝd

̂̆�(k�) ̂dBt(k
�) ⋅ i(k − k�)q̂(k − k�)q̂(k)dk�

���������������������������������������������������������������������������������
=dF2

(133)+
(2𝜋)d

(2𝜋)2d ∫ℝd

|||(k − k�)T ̂̆�(k�)q̂(k − k�)
|||
2

dk�dt.

(134)
aij = aij(0) = ∫

ℝd

𝜎̆i(z)𝜎̆j(z)dz

= ∫
ℝd

(�⊥𝜓𝜎(z))i(�
⊥𝜓𝜎(z))jdz,

(135)=
1

(2𝜋)d
ℜ∫

ℝd

�(�⊥𝜓𝜎(k
�))i

�(�⊥𝜓𝜎(k
�))jdk

�,

(136)

=
1

(2𝜋)d �ℝd

(k�⊥)i(k
�⊥)j

����
�𝜓𝜎(‖k�‖)

����
2

�����������������������������

even function if i = j,

odd function if i ≠ j

dk�,

(137)
=

1

d

1

(2�)d ∫ℝd

����‖k
�‖ ̂��(‖k�‖)

����
2

dk�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=a0

�ij.

Taking the expectation of the previous equation highlights 
the terms which contribute to the mean spectral energy 
budget.

Appendix 2: Stratonovich Material 
Derivative

Here, we express the Stratonovich material derivative:

as a function of the Ito material derivative

and its forcing

To do derive these results, we will apply the Stratonovich-
Ito-notation-change formula:

which can be found in Kunita [87], theorem 3.2.5 page 60. 
First, let us rewrite Eq. (143) in Lagrangian coordinates:

Then, we apply the formula (144) to obtain th corresponding 
Stratonovich equation:

(138)

dt�q̂(k)�2 = F1dt + dF2

−
1

(2𝜋)dd ∫
ℝd

��‖k‖‖k�‖𝜓̂𝜎(k
�)q̂(k)��2dk�dt

+
1

(2𝜋)d ∫ℝd

���k ⋅ k
�⊥𝜓̂𝜎(k

�)q̂(k − k�)
���
2

dk�dt,

(139)

= F1dt + dF2

+
1

(2𝜋)d ∫ℝd

��‖k‖‖k�‖𝜓̂𝜎(k
�)��2

�
sin2((�k, k�))�q̂(k − k�)�2 − 1

d
�q̂(k)�2)

�
dk�dt.

(140)

𝜕t𝔼�q̂(k)�2 = 𝔼(F1)

+
1

(2𝜋)d
𝔼∫

ℝd

��‖k‖‖k�‖𝜓̂𝜎(k
�)��2

�
sin2((�k, k�))�q̂(k − k�)�2 − 1

d
�q̂(k)�2)

�
dk�.

(141)

DS
t
q(x, t)

△

=

(
q

(
X
t+

dt

2

, t +
dt

2

)
− q

(
X
t−

dt

2

, t −
dt

2

))

|Xt=x
,

(142)Dtq(x, t)
△

=
(
q(Xt+dt, t + dt) − q(Xt, t)

)
|Xt=x

(143)Dtq = Fdt +HTdBt.

(144)r◦ds = rds +
1

2
d < r, s >,

(145)
d
(
q(Xt, t)

)
= q(Xt+dt, t + dt) − q(Xt, t)

= F(Xt, t)dt +HT(Xt, t)dBt.
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since, by application of the Ito-Wentzell-formula,

Finally, rewriting everything in the Eulerian grid Xt = x 
gives the result:

After this, we can reapply formula (144) in the Eulerian 
grid to get:

by identification with the balance (142).

Appendix 3: Effective Resolution and Inertial 
Range

Let us assume the simulated evolution law is 
Dtq = −�(−�)pq dt . The deterministic subgrid model 
−�(−�)pq acts, in a finite time t, as a low-pass filter. In Fou-
rier space, this filter is:

If the hyperviscosity � is well chosen, we may expect that at 
the Shanon resolution �∕�x = �M , only 10% of the energy 
is left by the filter, i.e.

A ratio smaller than 10% may lead to an over-damped simu-
lation. Moreover, the precise value of this ratio does not 
influence much our final estimate.

We may define the effective resolution as the scale 
� = �m where the deterministic subgrid model influence is 

(146)d
(
q(Xt, t)

)
= q

(
X
t+

dt

2

, t +
dt

2

)
− q

(
X
t−

dt

2

, t −
dt

2

)
,

(147)= F(Xt, t)dt − d⟨HT(Xt, t),Bt⟩ +HT(Xt, t)◦dBt,

(148)
=
�
F −

1

2

d

dt
⟨HT ,Bt⟩

−
1

2
tr
��
�T

�
�
HT

��
(Xt, t)dt +HT(Xt, t)◦dBt,

(149)
d
(
HT(Xt, t)

)
= (dH)T(Xt, t) +

(
�dBt ⋅ �

)
HT

+ ( others terms in dt).

(150)

DS
t
q(x, t) =

�
F −

1

2

d

dt
⟨HT ,Bt⟩

−
1

2
tr
��
�T

�
�
HT

��
(x, t)dt +HT(x, t)◦dBt.

(151)
DS

t
q(x, t) =

(
F −

1

2
tr
((
�T

�
)
HT

))
(x, t)dt +HT(x, t)dBt,

(152)= Dtq(x, t) −
1

2
tr
((
�T

�
)
HT

)
(x, t)dt.

(153)F(‖k‖) = exp
�
−�t‖k‖2p�.

(154)F(�M) = 1∕10.

negligible. There, we may expect the filter to be equal to 
95% , i.e.:

The ratio �m∕�M can then be derived from formulas (153), 
(154) and (155).
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